Generation of Longitudinal Streamwise Vortices—A Device for Improving Heat Exchanger Design

1994 ◽  
Vol 116 (3) ◽  
pp. 588-597 ◽  
Author(s):  
G. Biswas ◽  
P. Deb ◽  
S. Biswas

Laminar flow and heat transfer characteristics in a rectangular channel, containing built-in vortex generators of both the slender delta-wing and winglet-pair type, have been analyzed by means of solution of the full Navier–Stokes and energy equations. Each wing or winglet pair induces the creation of streamwise longitudinal vortices behind it. The spiraling flow of these vortices serves to entrain fluid from their outside into their core. These vortices also disrupt the growth of the thermal boundary layer and serve ultimately to bring about the enhancement of heat transfer between the fluid and the channel walls. The geometric configurations considered in the study are representative of single elements of either a compact gas-liquid fin-tube crossflow heat exchanger or a plate-fin crossflow heat exchanger. Physically, these vortex generators can be mounted on the flat surfaces of the above-mentioned heat exchangers by punching or embossing the flat surfaces. They can also act as spacers for the plate fins. Because of the favorable pressure gradient in the channel, the longitudinal vortices are stable and their influence persists over an area many times the area of the slender vortex generators. From a heat transfer point of view, the delta-wing generator is found to be more effective than the winglet-pair. However, most convective heat transfer processes encounter two types of loss, namely, losses due to fluid friction and those due to heat transfer across finite temperature gradient. Because these two phenomena are manifestations of irreversibility, an evaluation of the augmentation techniques is also made from a thermodynamic viewpoint. Conclusions that are drawn thus include discussion about the influence of vortex generators (wings/winglets) on irreversibility.

1994 ◽  
Vol 116 (4) ◽  
pp. 880-885 ◽  
Author(s):  
St. Tiggelbeck ◽  
N. K. Mitra ◽  
M. Fiebig

Longitudinal vortices can be generated in a channel flow by punching or mounting small triangular or rectangular pieces on the channel wall. Depending on their forms, these vortex generators (VG) are called delta wing, rectangular wing, pair of delta winglets, and pair of rectangular winglets. The heat transfer enhancement and the flow losses incurred by these four basic forms of VGs have been measured and compared in the Reynolds number range of 2000 to 9000 and for angles of attack between 30 and 90 deg. Local heat transfer coefficients on the wall have been measured by liquid crystal thermography. Results show that winglets perform better than wings and a pair of delta winglets can enhance heat transfer by 46 percent at Re=2000 to 120 percent at Re=8000 over the heat transfer on a plate.


2019 ◽  
Vol 130 ◽  
pp. 01027
Author(s):  
Stefan Mardikus ◽  
Petrus Setyo Prabowo ◽  
Vinsensius Tiara Putra ◽  
Made Wicaksana Ekaputra ◽  
Juris Burlakovs

Vortex generator is a method to enhancing of heat exchanger performance but still have some disadvantages when the heat transfer performance increase. One of the disadvantage using vortex generator is high pressure drop. This investigation will be compared three type vortex generators to result the overall performance of heat transfer around tube in plate fin heat exchanger. The three types of vortex generator to investigate are rectangular winglet type, delta winglet type, and trapezoidal winglet type in laminar flow. The result showed that using the kind of trapezoidal winglet pair type in the plate fin and tube heat exchanger consist of six rows of round tube with two neighboring fins form a channel better performance than two types vortex generators such as rectangular winglet type and delta winglet type. The heat transfer coefficient when use trapezoidal winglet type was increased almost same with rectangular winglet type and pressure drop was decreased more than delta winglet type.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1846
Author(s):  
Tomasz Kura ◽  
Elzbieta Fornalik-Wajs ◽  
Jan Wajs ◽  
Sasa Kenjeres

The jet impingement phenomenon plays an important role among the heat transfer intensification methods. Very often its application and analyses refer to simple flat surfaces, while there is a lack of information in the literature for cases addressing curved surfaces. In the present work, the single jet impingement on the non-flat (concave and convex) surface is studied for a wide range of geometries, which originate from the mini-jet heat-exchanger design. The numerical simulations were performed by an advanced ζ-f turbulence model implemented in the open-source OpenFOAM (ESI-OpenCFD Ltd, Bracknell, United Kingdom) code. Noticeable differences in the phenomena occurring on the convex and concave surfaces were identified in the stagnation zone. Besides, the existence and location of the secondary peak in the Nusselt number distribution differed between the cases. These distributions were influenced by the shape of geometry, which determined flow characteristics and resulting heat transfer performance. The origins of these differences were looked at in the turbulence characteristics close to the impinged surface of the stagnations zone and its vicinity, where turbulence kinetic energy and enstrophy were analysed. It was stated that the differences are already noticeable for the single jet impingement case, but they might sum up when multiple jets are considered. Therefore, here presented results would be important for the analysis of the overall unit of mentioned mini-jets heat-exchanger.


Author(s):  
S. Ferrouillat ◽  
P. Tochon ◽  
C. Garnier ◽  
H. Peerhossaini

Compact heat exchangers are well known for their ability to transfer a large amount of heat while retaining low volume and weight. The purpose of this paper is to study the potential of using this device as a chemical reactor, generally called a heat exchanger-reactor (HEX reactor). Indeed, the question arises: can these geometries combine heat transfer and mixing in the same device? Such a technology would offer many potential advantages, such as better reaction control (through the thermal aspect), improved selectivity (through intensified mixing, more isothermal operation and shorter residence time, and sharper RTDs), byproduct reduction, and enhanced safety. Several geometries of compact heat exchanger based on turbulence generation are available. This paper focuses on one type: vortex generators. The main objective is to contribute to the determination of turbulent flow inside various geometries by computational fluid dynamics methods. These enhanced industrial geometries are studied in terms of their thermal-hydraulic performance and macro-/micro-mixing ability. The longitudinal vortices they generate in a channel flow turn the flow perpendicular to the main flow direction and enhance mixing between the fluid close to the fin and that in the middle of the channel. Two kinds of vortex generators are considered: a delta winglet pair and a rectangular winglet pair. For both, good agreement is obtained between numerical results and data in the literature. The vortex generator concept is found to be very efficient in terms of heat-transfer enhancement and macro-mixing. Nevertheless, the micro-mixing level is poor due to strong inhomogeneities: the vortex generator must be used as a heat-transfer enhancement device or as a static mixer for macro- and meso-mixing.


Author(s):  
Hosseinali Soltanipour ◽  
Iraj Mirzaei ◽  
Parisa Choupani

In the present work heat transfer characteristics and flow structure in turbulent flow through a rectangular channel containing built-in triangular winglet-type vortex generators have been analyzed by means of solutions of the Navier-Stokes and energy equations using finite volume method. The geometrical configuration is representative of single element of plain-plate heat exchangers. Each winglet-pair induces longitudinal vortices behind it. Shear stress transport (SST) model is used in this study. The underlying physical phenomena have been described and the effects of Reynolds number and angle of attack, on the heat transfer, pressure drop and thermal performance have been presented.


2002 ◽  
Vol 16 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Dong-Seong Park ◽  
Min-Ho Chung ◽  
Sang-Yun Lee

Sign in / Sign up

Export Citation Format

Share Document