Flow Regime Transition in the Post-CHF Flow Regimes under Subcooled and Low-quality Conditions

2021 ◽  
Vol 136 ◽  
pp. 103543
Author(s):  
Qingqing Liu ◽  
Joseph Kelly ◽  
Xiaodong Sun
Author(s):  
Ashfaq Shaikh ◽  
Muthanna H. Al-Dahhan

Due to varied flow behavior, the demarcation of hydrodynamic flow regimes is an important task in the design and scale-up of bubble column reactors. This article reviews most hydrodynamic studies performed for flow regime identification in bubble columns. It begins with a brief introduction to various flow regimes. The second section examines experimental methods for measurement of flow regime transition. A few experimental studies are presented in detail, followed by the effect of operating and design conditions on flow regime transition. A table summarizes the reported experimental studies, along with their operating and design conditions and significant conclusions. The next section deals with the current state of transition prediction, and includes purely empirical correlations, semi-empirical models, linear stability theory, and Computational Fluid Dynamics (CFD) based studies.


2018 ◽  
Author(s):  
Anselm Köhler ◽  
Jan-Thomas Fischer ◽  
Riccardo Scandroglio ◽  
Mathias Bavay ◽  
Jim McElwaine ◽  
...  

Abstract. Large avalanches usually encounter different snow conditions along their track. When they release as slab avalanches comprising cold snow, they can subsequently develop into powder snow avalanches entraining snow as they move down the mountain. Typically, this entrained snow will be cold (T < −1 °C) at high elevations near the surface, but warm (T > −1 °C) at lower elevations or deeper in the snow pack. The intake of thermal energy in the form of warm snow is believed to cause a flow regime transition. Measurements of flow regime transitions are performed at the Vallée de la Sionne avalanche test site in Switzerland using two different radar systems. The data are then combined with snow temperatures calculated with the snow cover model SNOWPACK. We define transitions as complete, when the deposit at runout is characterized only by warm snow, or as partial, if there is a warm flow regime but the furthest deposit is characterized by cold snow. We introduce a transition factor Ft, based on the runout of cold and warm flow regimes, as a measure to quantify the transition type. Finally, we parameterize the snow cover temperature along the avalanche track by the altitude Hs, which represents the point where the average temperature of the uppermost 0.5 m changes from cold to warm. We find that Ft is related to the snow cover properties, i.e. approximately proportional to Hs. Thus, the flow regime in the runout area and the type of transition can be predicted by knowing the snow cover temperature distribution. We find, that, if Hs is more than 500 m above the valley floor for the path geometry of Vallée de la Sionne, entrainment of warm surface snow leads to a complete flow regime transition and the runout area is reached by only warm flow regimes. Such knowledge is of great importance since the impact pressure and the effectiveness of protection measures are greatly dependent on the flow regime.


2018 ◽  
Vol 12 (12) ◽  
pp. 3759-3774 ◽  
Author(s):  
Anselm Köhler ◽  
Jan-Thomas Fischer ◽  
Riccardo Scandroglio ◽  
Mathias Bavay ◽  
Jim McElwaine ◽  
...  

Abstract. Large avalanches usually encounter different snow conditions along their track. When they release as slab avalanches comprising cold snow, they can subsequently develop into powder snow avalanches entraining snow as they move down the mountain. Typically, this entrained snow will be cold (T‾<-1 ∘C) at high elevations near the surface, but warm (T‾>-1 ∘C) at lower elevations or deeper in the snowpack. The intake of warm snow is believed to be of major importance to increase the temperature of the snow composition in the avalanche and eventually cause a flow regime transition. Measurements of flow regime transitions are performed at the Vallée de la Sionne avalanche test site in Switzerland using two different radar systems. The data are then combined with snow temperatures calculated with the snow cover model SNOWPACK. We define transitions as complete when the deposit at runout is characterized only by warm snow or as partial if there is a warm flow regime, but the farthest deposit is characterized by cold snow. We introduce a transition index Ft, based on the runout of cold and warm flow regimes, as a measure to quantify the transition type. Finally, we parameterize the snow cover temperature along the avalanche track by the altitude Hs, which represents the point where the average temperature of the uppermost 0.5 m changes from cold to warm. We find that Ft is related to the snow cover properties, i.e. approximately proportional to Hs. Thus, the flow regime in the runout area and the type of transition can be predicted by knowing the snow cover temperature distribution. We find that, if Hs is more than 500 m above the valley floor for the path geometry of Vallée de la Sionne, entrainment of warm surface snow leads to a complete flow regime transition and the runout area is reached by only warm flow regimes. Such knowledge is of great importance since the impact pressure and the effectiveness of protection measures are greatly dependent on the flow regime.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Quanhong Zhu ◽  
Qingshan Huang ◽  
Chao Yang

AbstractThe magnetic field has been successfully used to intensify the liquid–solid contact performance in the fluidized bed, creating the magnetized fluidized bed (MFB). The MFBs with purely magnetizable particles and with the binary admixture of magnetizable and nonmagnetizable particles could be simply termed the pure MFB and admixture MFB, respectively. Their potential application in the chemical and biochemical industries has been thoroughly explored in the literature. However, a fundamental investigation on the hydrodynamics therein is far from sufficient, severely hindering the commercial application. For this reason, this review summarized the relevant findings, including (1) flow regime transition, (2) boundaries between two adjacent flow regimes, (3) unique features of the magnetically stabilized bed, (4) hysteresis phenomenon and bed voidage, (5) minimum fluidization velocity and terminal velocity, (6) numerical simulation and segregation of the admixture MFB, and (7) some explored applications. More importantly, the existing controversies and unsolved issues in this area were identified. Among others, the flow regime transition and unique hydrodynamic characteristics of each flow regime should be first clarified, only after which could the terminology describing all the flow regimes be unified and the results from different scholars be compared.


2003 ◽  
Vol 125 (4) ◽  
pp. 544-544 ◽  
Author(s):  
Sang Young Son ◽  
Jeffrey S. Allen ◽  
Kenneth O. Kihm

2010 ◽  
Vol 43 (10) ◽  
pp. 829-832 ◽  
Author(s):  
Hiroaki Matsubara ◽  
Kiyoshi Naito ◽  
Hideharu Kuwamoto ◽  
Toshiyuki Sakaguchi

2003 ◽  
Vol 96 (1-3) ◽  
pp. 15-22 ◽  
Author(s):  
M.C. Ruzicka ◽  
J. Drahoš ◽  
P.C. Mena ◽  
J.A. Teixeira

2019 ◽  
Vol 145 (7) ◽  
pp. 06019004 ◽  
Author(s):  
Weichen Ren ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Yu Zhou

Sign in / Sign up

Export Citation Format

Share Document