Analysis of condensation and secondary flows at three-way junctions using optical visualization techniques and Computational Fluid Dynamics

Author(s):  
J. Galindo ◽  
R. Navarro ◽  
D. Tarí ◽  
F. Moya
Author(s):  
Glen Snedden ◽  
Dwain Dunn ◽  
Grant Ingram ◽  
David Gregory-Smith

As turbine manufacturers strive to develop machines that are more efficient, one area of focus has been the control of secondary flows. To a large extent these methods have been developed through the use of computational fluid dynamics and detailed measurements in linear and annular cascades and proven in full scale engine tests. This study utilises 5-hole probe measurements in a low speed, model turbine in conjunction with computational fluid dynamics to gain a more detailed understanding of the influence of a generic endwall design on the structure of secondary flows within the rotor. This work is aimed at understanding the influence of such endwalls on the structure of secondary flows in the presence of inlet skew, unsteadiness and rotational forces. Results indicate a 0.4% improvement in rotor efficiency as a result of the application of the generic non-axisymmetric endwall contouring. CFD results indicate a clear weakening of the cross passage pressure gradient, but there are also indications that custom endwalls could further improve the gains. Evidence of the influence of endwall contouring on tip clearance flows is also presented.


Author(s):  
L. D. Smith ◽  
M. E. Conner ◽  
B. Liu ◽  
B. Dzodzo ◽  
D. V. Paramonov ◽  
...  

The present study demonstrates a process used to develop confidence in Computational Fluid Dynamics (CFD) as a tool to investigate flow and temperature distributions in a PWR fuel bundle. The velocity and temperature fields produced by a mixing spacer grid of a PWR fuel assembly are quite complex. Before using CFD to evaluate these flow fields, a rigorous benchmarking effort should be performed to ensure that reasonable results are obtained. Westinghouse has developed a method to quantitatively benchmark CFD tools against data at conditions representative of the PWR. Several measurements in a 5×5 rod bundle were performed. Lateral flowfield testing employed visualization techniques and Particle Image Velocimetry (PIV). Heat transfer testing involved measurements of the single-phase heat transfer coefficient downstream of the spacer grid. These test results were used to compare with CFD predictions. Among the parameters optimized in the CFD models based on this comparison with data include computational mesh, turbulence model, and boundary conditions. As an outcome of this effort, a methodology was developed for CFD modeling that provides confidence in the numerical results.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Diego Torre ◽  
Raúl Vázquez ◽  
Elena de la Rosa Blanco ◽  
Howard P. Hodson

This paper describes a new flow mechanism for the reduction in secondary flows in low pressure turbines using the benefit of contoured endwalls. The extensive application of contoured endwalls in recent years has provided a deeper understanding of the physical phenomenon that governs the reduction in secondary flows. Based on this understanding, the endwall geometry of a linear cascade of solid-thin profiles typical of low pressure turbines has been redesigned. Experimental data are presented for the validation of this new solution. Based on these data, a reduction of 72% in the secondary kinetic energy helicity (SKEH) and 20% in the mixed-out endwall losses can be obtained. Computational fluid dynamics simulations are also presented to illustrate the effect of the new endwall on the secondary flows. Furthermore, an explanation of the flow mechanism that governs the reduction in the SKEH, and the losses is given.


Author(s):  
Jonathan Bergh ◽  
Glen Snedden ◽  
Daya Reddy

Secondary flows are a well-known source of loss in turbomachinery flows, contributing up to 30% of the total aerodynamic blade row loss. With the increase in pressure on aero-engine manufacturers to produce lighter, more powerful and increasingly more efficient engines, the mitigation of the losses associated with secondary flow has become significantly more important than in the past. This is because the production of secondary flow is closely related to the amount of loading and hence the work output of a blade row, which then allows part counts and overall engine weight to be reduced. Similarly, higher efficiency engines demand larger engine pressure ratios which in turn lead to reduced blade passage heights in which secondary flows then dominate. This article discusses the design and application of an automated turbine non-axisymmetric endwall contour optimization procedure for the rotor of a low speed, 1-stage research turbine, which was used as part of a research program to determine the most effective objective functions for reducing turbine secondary flows. In order to produce as effective as possible designs, the optimization procedure was coupled to a computational fluid dynamics routine with as high a degree of fidelity as possible and an efficient global optimization scheme based on the so-called efficient global optimization algorithm. In order to compliment the requirements of the efficient global optimization approach, as well as offset some of the computational requirements of the computational fluid dynamics, the DACE metamodel was used as an underlying surrogate model.


Author(s):  
Glen Snedden ◽  
Dwain Dunn ◽  
Grant Ingram ◽  
David Gregory-Smith

The application of non-axisymmetric end walls in turbine stages has gained wide spread acceptance as a means to improve the performance of turbines in both power generation and aero-derivative applications. Non-axisymmetric end walls are aimed at the control of secondary flows and to a large extent have been developed through the use of computational fluid dynamics and detailed measurements in linear and annular cascades and proven in full scale engine tests. Little or no literature is available describing their performance at conditions other than design. This study utilises 5-hole probe measurements in a low speed, model turbine in conjunction with computational fluid dynamics to gain a more detailed understanding of the influence of a generic end wall design on the structure of secondary flows at both on and off-design flow conditions. Results indicate a 0.4% improvement in rotor efficiency at design but this was reduced at off design and at higher loading the rotor efficiency was reduced by 0.5%. Stage efficiencies were improved for all conditions but with a declining trend as load was increased. Experimental and CFD results are examined to investigate these findings further.


2018 ◽  
Vol 122 (1250) ◽  
pp. 646-665 ◽  
Author(s):  
G. Snedden ◽  
D. Dunn ◽  
G. Ingram

ABSTRACTNon-axisymmetric endwalls in turbine stages have shown to be a robust method to improve the performance of turbines in both power generation and aero-derivative applications. Non-axisymmetric endwalls target the control of secondary flows and are designed using detailed computational fluid dynamics coupled with a variety of optimisation algorithms and utilising a number of objective functions according to the engine company or researcher's preference. These numerical predictions are often backed up by detailed measurements in linear and annular cascades and later proven in full-scale engine tests. Relatively little literature is available describing their performance in rotating test rigs or at conditions other than design, apart from that of the authors. This study comprehensively revisits the low-speed, model turbines used in the earlier study, replacing all of the 5-hole probe data with more accurate results and additional hot-film measurements. These results together with computational fluid dynamics solutions are used to show the success of the method across a large incidence range and to compare to earlier cascade results for a similar endwall and blade profile to establish the usefulness of cascade testing in this application. In addition, a comparison to two other off-design studies is made. Results indicate that the endwalls successfully improve the rotor total isentropic efficiency at all test conditions and that the improvement increases with increased turning in the blade row, from 0.5% to 1.8% across the incidence range. The results also compare well to the estimation of isentropic efficiency improvement that can be drawn from the cascade testing which stands at 1.55%.


Sign in / Sign up

Export Citation Format

Share Document