Bubble characteristics from injected air sheet through slots in a water cross-flow

Author(s):  
Leila Dhar ◽  
Florentin Anne ◽  
Grégoire Recchia ◽  
Stéphane Etienne ◽  
Cédric Béguin ◽  
...  
2020 ◽  
Vol 37 (9) ◽  
pp. 1737-1751
Author(s):  
Mahdi Razaz ◽  
Daniela Di Iorio ◽  
Binbin Wang ◽  
Ian MacDonald

AbstractTwo video time-lapse cameras (VTLCs) were deployed by a remotely operated underwater vehicle (ROV) to observe the temporal and spatial variability of a natural hydrocarbon seep at 1180 m depth in the Green Canyon 600 lease block, Gulf of Mexico. The VTLCs were positioned approximately 60 and 90 cm away from the vent, each recording 15 s video bursts at 30 frames per second, illuminated by a 2000 lumen (lm) LED lamp. One camera functioned for 2 weeks; the second camera recorded 568 video bursts at 6 h intervals from 3 September 2017 to 2 February 2018 (153 days). Over the campaign period, seepage from three vents along a 10 cm cluster shifted toward a new fault line with up to nine intermittent individual vents shifting along 20 cm. We developed a semisupervised algorithm using Mathematica and ImageJ routines to resolve the rise velocity and size of individual bubbles. The algorithm was applied to the last 30 frames of each video burst. Bubble characteristics were also analyzed in the videos recorded by the ROV camera. Processing VTLC records yielded a bubble size distribution comparable (5% deviation) to the ROV camera, while the rise velocities were found to be 12% smaller than the ROV data. Hydrocarbon flux estimated from VTLC data was also compared favorably (2% difference) with synoptic physical collections of hydrocarbons into an ROV-held funnel. The long-term measurements indicate that bubble rise velocity was weakly correlated to the discharge rate as well as to the cross-flow velocity.


Author(s):  
O. M. Katz

The swelling of irradiated UO2 has been attributed to the migration and agglomeration of fission gas bubbles in a thermal gradient. High temperatures and thermal gradients obtained by electron beam heating simulate reactor behavior and lead to the postulation of swelling mechanisms. Although electron microscopy studies have been reported on UO2, two experimental procedures have limited application of the results: irradiation was achieved either with a stream of inert gas ions without fission or at depletions less than 2 x 1020 fissions/cm3 (∼3/4 at % burnup). This study was not limited either of these conditions and reports on the bubble characteristics observed by transmission and fractographic electron microscopy in high density (96% theoretical) UO2 irradiated between 3.5 and 31.3 x 1020 fissions/cm3 at temperatures below l600°F. Preliminary results from replicas of the as-polished and etched surfaces of these samples were published.


2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
H Soda ◽  
A Zormann ◽  
A Agaev ◽  
G Christopoulos ◽  
H Schweiger ◽  
...  

2014 ◽  
Vol 8 (6) ◽  
pp. 1012
Author(s):  
Yusuke Katayama ◽  
Shouichiro Iio ◽  
Salisa Veerapun
Keyword(s):  

2007 ◽  
Vol 17 (1) ◽  
pp. 47-70 ◽  
Author(s):  
Raffaele Ragucci ◽  
Alessandro Bellofiore ◽  
Antonio Cavaliere
Keyword(s):  

Author(s):  
Frantisek Marsik ◽  
Zdenek Travnicek ◽  
Ruey-Hor Yen ◽  
Wen-Yun Tu ◽  
An-Bang Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document