Fluidelastic instability in a tube array subjected to two-phase R-11 cross-flow

1996 ◽  
Vol 22 ◽  
pp. 131
Author(s):  
P Feenstra
Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The working fluid used was Freon 11, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The damping measurements were obtained by “plucking” the monitored tube from outside the test section using electromagnets. An exponential function was fitted to the tube decay trace, producing consistent damping measurements and minimizing the effect of frequency shifting due to fluid added mass fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of density and velocity predictions. It was found that the Capillary number, when combined with the two-phase damping ratio (interfacial damping), shows a well defined behaviour depending on the flow regime. This observation can be used to develop a better methodology to normalize damping results. The fluidelastic results agree with previously presented data when analyzed using the HEM and the half-power bandwidth method. The interfacial velocity is suggested for fluidelastic studies due to its capability for collapsing the fluidelastic data. The interfacial damping was introduced as a tool to include the effects of flow regime into the stability maps.


2015 ◽  
Vol 285 ◽  
pp. 58-64 ◽  
Author(s):  
Nai-bin Jiang ◽  
Bin Chen ◽  
Feng-gang Zang ◽  
Yi-xiong Zhang

1995 ◽  
Vol 117 (4) ◽  
pp. 321-329 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor ◽  
J. H. Jong ◽  
I. G. Currie

Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.


Author(s):  
Paul Feenstra ◽  
Teguewinde Sawadogo ◽  
Bruce Smith ◽  
Victor Janzen ◽  
Helen Cothron

The tubes in the U-bend region of a recirculating type of nuclear steam generator are subjected to cross-flow of a two-phase mixture of steam and water. There is a concern that these tubes may experience flow-induced vibration, including the damaging effects of fluidelastic instability. This paper presents an update and results from a series of flow-induced vibration experiments performed by Canadian Nuclear Laboratories for the Electric Power Research Institute (EPRI) using the Multi-Span U-Bend test rig. In the present experiments, the main focus was to investigate fluidelastic instability of the U-tubes subjected to a cross-flow of air. The tube bundle is made of 22 U-tubes of 0.5 in (12.7 mm) diameter, arranged in a rotated triangular configuration with a pitch-over-diameter ratio of 1.5. The test rig could be equipped with variable clearance flat bar supports at two different locations to investigate a variety of tube and support configurations. The primary purpose of the overall project is to study the effect of flat bar supports on ‘in plane’ (‘streamwise’) instability in a U-tube bundle with realistic tube-to-support clearances or preloads, and eventually in two-phase flow conditions. Initially, the test rig was designed for tests in air-flow using an industrial air blower. Tests with two-phase Freon refrigerant (R-134a) will follow. This paper describes the test rig, experimental setup, and the challenges presented by simulating an accurate representation of current steam generator designs. Results from the first series of tests in air flow are described.


Author(s):  
R. Violette ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Tests were done to study the fluidelastic instability of a cluster of seven cylinders much more flexible in the flow direction than in the lift direction. The array configuration is rotated triangular with a pitch to diameter ratio of 1.5. The array was subjected to two-phase (air-water) cross flow. Cylinder natural frequencies of 14 and 28 Hz were tested. Fluidelastic instabilities were observed at 65, 80, 90 and 95% void fraction albeit at a somewhat higher flow velocity than that expected for axisymetrically flexible arrays. These results and additional wind tunnel results are compared to existing data on fluidelastic instability.


Author(s):  
Stephen Olala ◽  
Njuki Mureithi

In-plane fluidelastic instability is a dynamic phenomenon requiring fluid coupling of at least two degrees-of-freedom, in this case, at least two flexible tubes. Due to the nature of the mechanism causing streamwise fluidelastic instability, a purely experimental or an unsteady determination would require intensive experimental effort. As a compromise between experimental effort and prediction accuracy, the quasi-steady model is used in the current study. In the present work, previously measured quasi-steady and unsteady forces are used to estimate the time delay first between the displacement of an oscillating tube and the forces generated on itself then the time delay between the displacement of a central oscillating tube and the forces induced on the adjacent tubes. The estimated time delays are then used together with drag coefficients and derivatives to predict the in-plane fluidelastic instability in a rotated triangular tube array of P/D = 1.5 subjected to two-phase flow. The results closely replicate dynamic test results and confirm the predominance of the stiffness controlled mechanism and the potential of the quasi-steady model in accurately predicting streamwise fluidelastic instability in arrays subjected to two-phase flows.


1994 ◽  
Vol 116 (3) ◽  
pp. 233-253 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor

Two-phase flow exists in many industrial components. To avoid costly vibration problems, sound technology in the area of two-phase flow-induced vibration is required. This paper is an overview of the principal mechanisms governing vibration in two-phase flow. Dynamic parameters such as hydrodynamic mass and damping are discussed. Vibration excitation mechanisms in axial flow are outlined. These include fluidelastic instability, phase-change noise, and random excitation. Vibration excitation mechanisms in cross-flow, such as fluidelastic instability, periodic wake shedding, and random excitation, are reviewed.


2005 ◽  
Vol 127 (1) ◽  
pp. 84-91 ◽  
Author(s):  
V. P. Janzen ◽  
E. G. Hagberg ◽  
M. J. Pettigrew ◽  
C. E. Taylor

The dynamic response of U-tubes to two-phase cross-flow has been studied in tests involving a simplified U-tube bundle with a set of flat-bar supports at the apex, subjected to air–water cross-flow over the mid-span region. Tube vibration and the interaction between tubes and supports were measured over a wide range of void fractions and flow rates, for three different tube-to-support clearances. The vibration properties and tube-to-support work-rates could be characterized in terms of the relative influence of fluidelastic instability and random-turbulence excitation. For the first time, in a U-bend tube bundle with liquid or two-phase flow, fluidelastic instability was observed both in the out-of-plane and in the in-plane direction. This raises the possibility of higher-than-expected tube-to-support work-rates for U-tubes restrained by flat bars, particularly if fluidelastic instability, random turbulence and loose supports combine adversely.


Sign in / Sign up

Export Citation Format

Share Document