scholarly journals Collision statistics and settling velocity of inertial particles in homogeneous turbulence from high-resolution DNS under two-way momentum coupling

Author(s):  
Bogdan Rosa ◽  
Szymon Kopeć ◽  
Ahmad Ababaei ◽  
Jacek Pozorski
2016 ◽  
Vol 792 ◽  
pp. 869-893 ◽  
Author(s):  
Ari Frankel ◽  
H. Pouransari ◽  
F. Coletti ◽  
A. Mani

We study the case of inertial particles heated by thermal radiation while settling by gravity through a turbulent transparent gas. We consider dilute and optically thin regimes in which each particle receives the same heat flux. Numerical simulations of forced homogeneous turbulence are performed taking into account the two-way coupling of both momentum and temperature between the dispersed and continuous phases. Particles much smaller than the smallest flow scales are considered and the point-particle approximation is adopted. The particle Stokes number (based on the Kolmogorov time scale) is of order unity, while the nominal settling velocity is up to an order of magnitude larger than the Kolmogorov velocity, marking a critical difference with previous two-way coupled simulations. It is found that non-heated particles enhance turbulence when their settling velocity is sufficiently high compared to the Kolmogorov velocity. Energy spectra show that the non-heated particle settling impacts both the very small and very large flow scales, while the intermediate scales are weakly affected. When heated, particles shed plumes of buoyant gas, further modifying the turbulence structure. At the considered radiation intensities, clustering is strong but the classic mechanism of preferential concentration is modified, while preferential sweeping is eliminated or even reversed. Particle heating also causes a significant reduction of the mean settling velocity, which is caused by rising buoyant plumes in the vicinity of particle clusters. The turbulent kinetic energy is affected non-monotonically as the radiation intensity is increased due to the competing effects of the downward gravitational force and the upward buoyancy force. The thermal radiation influences all scales of the turbulence. The effects of settling and buoyancy on the turbulence anisotropy are also discussed.


1987 ◽  
Vol 174 ◽  
pp. 441-465 ◽  
Author(s):  
M. R. Maxey

The average settling velocity in homogeneous turbulence of a small rigid spherical particle, subject to a Stokes drag force, is shown to depend on the particle inertia and the free-fall terminal velocity in still fluid. With no inertia the particle settles on average at the same rate as in still fluid, assuming there is no mean flow. Particle inertia produces a bias in each trajectory towards regions of high strain rate or low vorticity, which affects the mean settling velocity. Results from a Gaussian random velocity field show that this produces an increased settling velocity.


1993 ◽  
Vol 256 ◽  
pp. 27-68 ◽  
Author(s):  
Lian-Ping Wang ◽  
Martin R. Maxey

The average settling velocity in homogeneous turbulence of a small rigid spherical particle, subject to a Stokes drag force, has been shown to differ from that in still fluid owing to a bias from the particle inertia (Maxey 1987). Previous numerical results for particles in a random flow field, where the flow dynamics were not considered, showed an increase in the average settling velocity. Direct numerical simulations of the motion of heavy particles in isotropic homogeneous turbulence have been performed where the flow dynamics are included. These show that a significant increase in the average settling velocity can occur for particles with inertial response time and still-fluid terminal velocity comparable to the Kolmogorov scales of the turbulence. This increase may be as much as 50% of the terminal velocity, which is much larger than was previously found. The concentration field of the heavy particles, obtained from direct numerical simulations, shows the importance of the inertial bias with particles tending to collect in elongated sheets on the peripheries of local vortical structures. This is coupled then to a preferential sweeping of the particles in downward moving fluid. Again the importance of Kolmogorov scaling to these processes is demonstrated. Finally, some consideration is given to larger particles that are subject to a nonlinear drag force where it is found that the nonlinearity reduces the net increase in settling velocity.


2019 ◽  
Vol 864 ◽  
pp. 925-970 ◽  
Author(s):  
Alec J. Petersen ◽  
Lucia Baker ◽  
Filippo Coletti

We study experimentally the spatial distribution, settling and interaction of sub-Kolmogorov inertial particles with homogeneous turbulence. Utilizing a zero-mean-flow air turbulence chamber, we drop size-selected solid particles and study their dynamics with particle imaging and tracking velocimetry at multiple resolutions. The carrier flow is simultaneously measured by particle image velocimetry of suspended tracers, allowing the characterization of the interplay between both the dispersed and continuous phases. The turbulence Reynolds number based on the Taylor microscale ranges from $Re_{\unicode[STIX]{x1D706}}\approx 200{-}500$, while the particle Stokes number based on the Kolmogorov scale varies between $St_{\unicode[STIX]{x1D702}}=O(1)$ and $O(10)$. Clustering is confirmed to be most intense for $St_{\unicode[STIX]{x1D702}}\approx 1$, but it extends over larger scales for heavier particles. Individual clusters form a hierarchy of self-similar, fractal-like objects, preferentially aligned with gravity and with sizes that can reach the integral scale of the turbulence. Remarkably, the settling velocity of $St_{\unicode[STIX]{x1D702}}\approx 1$ particles can be several times larger than the still-air terminal velocity, and the clusters can fall even faster. This is caused by downward fluid fluctuations preferentially sweeping the particles, and we propose that this mechanism is influenced by both large and small scales of the turbulence. The particle–fluid slip velocities show large variance, and both the instantaneous particle Reynolds number and drag coefficient can greatly differ from their nominal values. Finally, for sufficient loadings, the particles generally augment the small-scale fluid velocity fluctuations, which however may account for a limited fraction of the turbulent kinetic energy.


2006 ◽  
Vol 18 (2) ◽  
pp. 027102 ◽  
Author(s):  
Thorsten Bosse ◽  
Leonhard Kleiser ◽  
Eckart Meiburg

2018 ◽  
Vol 846 ◽  
pp. 1059-1075 ◽  
Author(s):  
P. D. Huck ◽  
C. Bateson ◽  
R. Volk ◽  
A. Cartellier ◽  
M. Bourgoin ◽  
...  

A particle-laden homogeneous isotropic turbulent flow is studied experimentally to understand the role of collective effects (e.g. particle–particle aerodynamic interactions caused by local particle accumulation) on the settling velocity of inertial particles (Stokes number: $0.3<St<0.6$). Conditional averaging of the particle vertical velocity on the local concentration identifies three settling regimes: modest enhancement by single particle–turbulence interactions in low concentration regions, rapid settling velocity increases in clusters at intermediate concentrations and saturation of the settling enhancement at large concentrations. The latter effect, associated with four-way coupling, displays qualitative agreement with simulations in the literature and is a new experimental observation. Fluctuations up to an order of magnitude larger than the background volume fraction are measured using Voronoï analysis. A model is developed following a classic volume-averaged multiphase flow methodology to provide an interpretation of the three settling regimes and quantitative predictions consistent with the measurements.


Author(s):  
Antonio Celani ◽  
Marco Martins Afonso ◽  
Andrea Mazzino

Sign in / Sign up

Export Citation Format

Share Document