scholarly journals Computational simulations of transitional flows around turbulence stimulators at low speeds

Author(s):  
Sang Bong Lee ◽  
Woochan Seok ◽  
Shin Hyung Rhee
2013 ◽  
Vol 10 (9) ◽  
pp. 853-858
Author(s):  
Amrish Kumar ◽  
Dinesh Mishra ◽  
Manoj Gautam ◽  
Suresh Thareja

Author(s):  
David M. Wittman

Tis chapter explains the famous equation E = mc2 as part of a wider relationship between energy, mass, and momentum. We start by defning energy and momentum in the everyday sense. We then build on the stretching‐triangle picture of spacetime vectors developed in Chapter 11 to see how energy, mass, and momentum have a deep relationship that is not obvious at everyday low speeds. When momentum is zero (a mass is at rest) this energy‐momentum relation simplifes to E = mc2, which implies that mass at rest quietly stores tremendous amounts of energy. Te energymomentum relation also implies that traveling near the speed of light (e.g., to take advantage of time dilation for interstellar journeys) will require tremendous amounts of energy. Finally, we look at the simplifed form of the energy‐momentum relation when the mass is zero. Tis gives us insight into the behavior of massless particles such as the photon.


Author(s):  
Silvia Budday ◽  
Sebastian Andres ◽  
Bastian Walter ◽  
Paul Steinmann ◽  
Ellen Kuhl

Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’


Author(s):  
Michelle Priante ◽  
David Tyrell ◽  
Benjamin Perlman

In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular incident, a cab car buckled laterally near the back end of the car. The buckling of the car caused both lateral and vertical accelerations, which led to unanticipated injuries to the occupants. A three-dimensional collision dynamics model of a multi-level passenger train has been developed to study the influence of multi-level design parameters and possible train configuration variations on the reactions of a multi-level car in a collision. This model can run multiple scenarios of a train collision. This paper investigates two hypotheses that could account for the unexpected mode of deformation. The first hypothesis emphasizes the non-symmetric resistance of a multi-level car to longitudinal loads. The structure is irregular since the stairwells, supports for tanks, and draglinks vary from side to side and end to end. Since one side is less strong, that side can crush more during a collision. The second hypothesis uses characteristics that are nearly symmetric on each side. Initial imperfections in train geometry induce eccentric loads on the vehicles. For both hypotheses, the deformation modes depend on the closing speed of the collision. When the characteristics are non-symmetric, and the load is applied in-line, two modes of deformation are seen. At low speeds, the couplers crush, and the cars saw-tooth buckle. At high speeds, the front end of the cab car crushes, and the cars remain in-line. If an offset load is applied, the back stairwell of the first coach car crushes unevenly, and the cars saw-tooth buckle. For the second hypothesis, the characteristics are symmetric. At low speeds, the couplers crush, and the cars remain in-line. At higher speeds, the front end crushes, and the cars remain in-line. If an offset load is applied to a car with symmetric characteristics, the cars will saw-tooth buckle.


Sign in / Sign up

Export Citation Format

Share Document