Efficient response determination of a M-D-O-F gear model subject to combined periodic and stochastic excitations

2020 ◽  
Vol 120 ◽  
pp. 103378
Author(s):  
Ying Zhang ◽  
Pol. D. Spanos
2015 ◽  
Vol 82 (10) ◽  
Author(s):  
Ioannis A. Kougioumtzoglou ◽  
Alberto Di Matteo ◽  
Pol D. Spanos ◽  
Antonina Pirrotta ◽  
Mario Di Paola

The recently developed approximate Wiener path integral (WPI) technique for determining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems has proven to be reliable and significantly more efficient than a Monte Carlo simulation (MCS) treatment of the problem for low-dimensional systems. Nevertheless, the standard implementation of the WPI technique can be computationally cumbersome for relatively high-dimensional MDOF systems. In this paper, a novel WPI technique formulation/implementation is developed by combining the “localization” capabilities of the WPI solution framework with an appropriately chosen expansion for approximating the system response PDF. It is shown that, for the case of relatively high-dimensional systems, the herein proposed implementation can drastically decrease the associated computational cost by several orders of magnitude, as compared to both the standard WPI technique and an MCS approach. Several numerical examples are included, whereas comparisons with pertinent MCS data demonstrate the efficiency and reliability of the technique.


2016 ◽  
Author(s):  
David Mavor ◽  
Kyle Barlow ◽  
Samuel Thompson ◽  
Benjamin A Barad ◽  
Alain R Bonny ◽  
...  

2018 ◽  
Author(s):  
Philip V'kovski ◽  
Markus Gerber ◽  
Jenna Kelly ◽  
Stephanie Pfaender ◽  
Nadine Ebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document