Effect of geometric imperfections and circumferential symmetry on the internal resonances of cylindrical shells

Author(s):  
Lara Rodrigues ◽  
Frederico M.A. Silva ◽  
Paulo B. Gonçalves
1975 ◽  
Vol 42 (2) ◽  
pp. 316-320 ◽  
Author(s):  
D. Lockhart ◽  
J. C. Amazigo

The dynamic buckling of imperfect finite circular cylindrical shells subjected to suddenly applied and subsequently maintained lateral or hydrostatic pressure is studied using a perturbation method. The geometric imperfections are assumed small but arbitrary. A simple asymptotic expression is obtained for the dynamic buckling load in terms of the amplitude of the Fourier component of the imperfection in the shape of the classical buckling mode. Consequently, for small imperfection, there is a simple relation between the dynamic buckling load under step-loading and the static buckling load. This relation is independent of the shape of the imperfection.


2019 ◽  
Vol 163 ◽  
pp. 314-323 ◽  
Author(s):  
Bo Wang ◽  
Xiangtao Ma ◽  
Peng Hao ◽  
Yu Sun ◽  
Kuo Tian ◽  
...  

2021 ◽  
Vol 26 (4) ◽  
pp. 34-39
Author(s):  
ATTILA BAKSA ◽  
DAVID GONCZI ◽  
LASZLA PETER KISS ◽  
PETER ZOLTAN KOVACS ◽  
ZSOLT LUKACS

The stability of thin-walled cylindrical shells under axial pressure is investigated. The results of both experiments and numerical simulations are presented. An appropriate finite element model is introduced that accounts not only for geometric imperfections but also for non-linearities. It is found that small geometrical imperfections within a given tolerance range have considerable negative effect on the buckling load compared to perfect geometry. Various post buckling shell shapes are possible, which depend on these imperfections. The experiments and simulations show a very good correlation.


2019 ◽  
Vol 293 ◽  
pp. 01003
Author(s):  
J F Jia ◽  
A D Lai ◽  
D L Rong ◽  
Z H Zhou ◽  
X S Xu

For finding out the relationship between vibrational modes and geometric imperfections, the dynamic behavior of cylindrical shells with a local imperfection is analyzed by using numerical simulation of finite element method in this paper. The results show that there are some differences in vibrational modes between cylindrical shells with and without imperfections. They appear that main corrugation of the mode of the higher orders for the shell with a local imperfection can be fastened on the region of the imperfection but the low order ones. The results also show that the vibrational modes of shells depend upon the size, shape and location of the imperfections. The local vibrational modes are discovered and are more obvious for the imperfection of the larger size. These results are helpful to the design of engineering structures.


Author(s):  
Lara Rodrigues ◽  
Paulo B. Gonçalves ◽  
Frederico M. A. Silva

This work investigates the influence of several modal geometric imperfections on the nonlinear vibration of simply-supported transversally excited cylindrical shells. The Donnell nonlinear shallow shell theory is used to study the nonlinear vibrations of the shell. A general expression for the transversal displacement is obtained by a perturbation procedure which identifies all modes that couple with the linear modes through the quadratic and cubic nonlinearities. The imperfection shape is described by the same modal expansion. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Substituting the obtained modal expansions into the equations of motions and applying the standard Galerkin method, a discrete system in time domain is obtained. Several numerical strategies are used to study the nonlinear behavior of the imperfect shell. Special attention is given to the influence of the form of the initial geometric imperfections on the natural frequencies, frequency-amplitude relation, resonance curves and bifurcations of simply-supported transversally excited cylindrical shells.


Sign in / Sign up

Export Citation Format

Share Document