initial geometric imperfections
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinyou Zhao ◽  
Junming Wei ◽  
Jun Wang

The horizontal bracing forces of column-bracing systems derived from past studies and current design codes were considered only located at middle of columns. Actually, the horizontal braces used to reduce the out-of-plane effective column lengths are frequently designed not to locate at middle of columns. In this paper, a large number of column-bracing systems with the horizontal braces unlocated at middle of columns were modelled and analyzed using the finite element method, in which the random initial geometric imperfections of both the columns and the horizontal braces unlocated at middle of columns were well considered by the Monte Carlo method. Based on the numerical calculations, parametric analysis, and probability statistics, the probability density function of the horizontal bracing forces was found, so that the corresponding design forces of horizontal braces unlocated at middle of columns were proposed which were compared with the design mid-height horizontal bracing forces in the previous study and the relevant codes. The results indicate that the design forces of the horizontal braces located at 0.6 column height are smaller than the mid-height horizontal bracing forces in the previous study while the design forces of horizontal braces located at 0.7 column height are larger than the mid-height horizontal bracing forces in the previous study. The proposed design forces of the horizontal braces located and unlocated at middle of columns are both smaller than the mid-height horizontal bracing forces stipulated in GB50017-2017, Eurocode 3-1992, and AS4100-1998. The above conclusions provide references for the engineering applications and further related code revisions.


Author(s):  
Ivan Okhten ◽  
Olha Lukianchenko

Performed analysis of the initial geometric imperfections influence on the stability of the open C-shaped bars. Test tasks were solved in MSC Nastran, which is based on the finite element method. Imperfections are given in different formulations: the general stability loss of an ideal bar, of wavy bulging of walls and shelves, of deplanation of a bar. To model imperfections, has been developed a program which for the formation of new coordinates of the nodes of the "deformed" model, the components of a vector similar to the form of stability loss are added to the corresponding coordinates of the middle surface of the bar. In this way, you can set initial imperfections in the forms of stability loss of the bar with different amplitude. Researches made with different values of the imperfection amplitude and eccentricity of applied efforts. All tasks are performed in linear and nonlinear staging. The conclusion is made regarding the influence of initial imperfections form and imperfection amplitude on the critical force in nonlinear calculations. It was found that the most affected are imperfections, which are given in the form of total loss of stability. It was revealed the influence of the imperfection amplitude on the magnitude of the critical force for such imperfections. The influence of imperfections amplitude given in the form of wavy bulging walls and in the form of deplanations is not affected on the value of the critical force.


2021 ◽  
pp. 136943322110015
Author(s):  
Yinqi Li ◽  
Feng Liu ◽  
Wenming Cheng ◽  
Huasen Liu

Latticed built-up columns are applied more extensively than solid columns in structural engineering because of their excellent load-carrying capacity and light weight. Studies on the bearing capacity of latticed columns, particularly multiple-legged latticed columns, need to be conducted in detail. In this investigation, seven four-legged latticed column specimens of different bar sections, bar distributions and loading eccentricities under compressive loads were subjected to experimental tests. The initial geometric imperfections of the legs and bars were measured and introduced into the FE numerical method. The experimental results were then compared with those of Geometrical and Material Non-Linear Analysis with Imperfection in ABAQUS software. The combined data indicate that the bar section, bar distribution and loading eccentricity significantly influenced the ultimate strength of four-legged latticed columns, producing maximum variations of 105.67%, 65.7% and 48.48%, respectively. This investigation demonstrates the influence of lacing bars and improves the results obtained from FE numerical analytical techniques.


2021 ◽  
Vol 26 (1) ◽  
pp. 18-44
Author(s):  
N. Brambatti Junior ◽  
M. Walber ◽  
A.D. de Meira Junior

AbstractInitial geometric imperfections are important for simulating local buckling in numerical models. References are found in the technical literature regarding open-section cold formed profiles. This work presents new procedures applied to a robust and closed-section cold formed profile subject to local buckling, and the use of procedures described in the technical literature already successfully used for open section profiles. The difference of this work in relation to the research already carried out is in the type of profile studied, in the mode of failure of the same and in the form of determination of the initial imperfections. The object of study of this work is a closed-section cold formed box profile with a short length when compared with its cross section and with local buckling failure mode. The strategies used in the present work to consider the initial geometric imperfections were to perform the linear stability analysis using the finite element method to obtain the local buckling mode that represents the deformed box profile geometry, to apply a multiplication factor in the displacements, replace the new geometry node coordinates for all profile nodes to induce the local buckling deformation mode, with model validation through experimental testing and the Effective Width Method (MLE) (ABNT NBR 14762 [1]). Finally, using the results of the collapse load of the experimental trial as a basis, it was possible to compare the results obtained by MLE and MEF. Thus, the presentation of this work used a methodology that describes the local buckling behavior and verified the precepts of the existing norms on the subject, combining theoretical and experimental methods, as they bring a better understanding of the structural problem in question.


2020 ◽  
Vol 2 (3) ◽  
pp. 183-193
Author(s):  
Erlina Yanuarini ◽  
Yanuar Setiawan ◽  
Tri Widya Swastika

ABSTRACTSteel beams are susceptible to initial geometric imperfections due to improper fabrication and installation processes. Consequently, long steel beams without stiffening are prone to bending due to lateral torsion. The purpose of this study is to determine the effect of variations in the initial geometric imperfections of Single Curvature-Moment (SCM) on the moment, total displacement, displacement in the X direction (U1), displacement in the Y direction (U2), and twist. This study used an RH profile with a compact wing and body. The boundary condition used is a simple beam with an initial geometric imperfection due to single moment-curvature (SCM) bending. The variations used are the initial geometric imperfections values of SCM 0 mm (without initial geometric imperfections), SR5 (with initial geometric imperfections of 5 mm), and SR10 (with initial geometric imperfections of 10 mm). Initial geometric imperfections of SCM in steel beam decreased moment capacities up to more than 2% in elastic conditions and 12% in plastic states. This SR10 beam is also a beam that has a displacement of the X-axis (U1 = -203,960 mm), a displacement of the Y-axis (U2 = -255,615 mm), and the most significant twist (28,179 °).Keywords: buckle, initial geometric imperfections, Single Curvature-MomentABSTRAKBalok baja rentan mengalami initial geometric imperfections akibat proses pabrikasi maupun pemasangan yang kurang tepat. Sementara balok baja yang panjang tanpa pengaku rentan mengalami tekuk akibat torsi lateral. Tujuan dari penelitian ini adalah untuk menentukan dampak variasi besarnya initial geometric imperfections Single Curvature-Moment (SCM) terhadap momen, displacement total, displacement arah X (U1), displacement arah Y (U2), dan twist. Penelitian ini menggunakan profil RH dengan sayap dan badan yang kompak. Boundary condition yang digunakan adalah balok sederhana dengan initial geometric imperfections akibat tekuk single momen curvature (SCM). Variasi yang digunakan adalah besarnya nilai initial geometric imperfections SCM 0 mm (tanpa initial geometric imperfections), SR5 (dengan initial geometric imperfections 5 mm), dan SR10 (dengan initial geometric imperfections 10 mm). Dari hasil penelitian diketahui bahwa pada kondisi elastis, leleh, maupun plastis, balok dengan initial geometric imperfections SCM menunjukkan penurunan kapasistas momen mengalami penurunan hingga mencapai lebih dari 2% pada kondisi elastis dan 12% pada kondisi plastis. Balok SR10 juga merupakan balok yang memiliki displacement arah sumbu X (U1=-203,960 mm), displacement arah sumbuY(U2=-255,615 mm), dan twist yang paling paling besar (28,179°).Kata kunci: tekuk, initial geometric imperfections, Single Curvature Moment


Author(s):  
Gaik A. Manuylov ◽  
Sergey B. Kositsyn ◽  
Irina E. Grudtsyna

The aim of the work is to research the precritical and postcritical equilibrium of the stiffened plates subjected aliquant critical loads. Methods. The finiteelement complex MSC PATRAN - NASTRAN was used in the paper. To simulate the plates, flat four-node elements were used. Calculations taking into account geometric nonlinearity were carried out. The material of the shells was considered absolutely elastic. Results. A technique has been developed to study the stability of reinforced longitudinally compressed plates; the critical forces of the stiffened plates of various thicknesses had been calculated. Graphs of deflections dependences on the value of the compressive load had been constructed. The influence of initial geometric imperfections on the value of the critical loads for stiffened plates has been investigated.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhun Li ◽  
Guang Pan ◽  
KeChun Shen

PurposeThe objective of this paper is to investigate numerically the buckling behavior of submersible composite cylinders.Design/methodology/approachBy means of FEM and golden section method, the search of hoop winding layers, longitudinal winding layers and helical winding layers are studied to optimize the buckling pressure. Considering the mid-strengthening cylinder, the size and distribution of stiffeners are studied systematically.FindingsThe results show that laying the hoop winding layers in the two outer sidewalls and the longitudinal winding layers in the middle of the shell is helpful to increase the buckling pressure, and the optimal helical winding angle changes with slenderness ratio.Originality/valueFor mid-strengthening cylinder, the effect of helical winding angle of stiffener on buckling pressure becomes weak gradually with the increase of stiffener thickness. With the increasing of the spacing between stiffeners, the buckling pressure increases first and decreases later. What is more, the mid-strengthening cylinder is less sensitive to the initial geometric imperfections than unstiffened shells.


Author(s):  
Shahed Jafarpour ◽  
Mohammad Reza Khedmati

This paper presents the vibration analysis of stiffened plates with initial imperfections, using both conventional and super finite element methods. Von Karman theory was utilized so as to formulate the plate element. Eccentricity of the stiffeners is also taken into account and they are not limited to be placed on nodal lines. Consequently, any configuration of plate and stiffeners can be modelled. Nonlinear finite element equations are solved using arc-length method and backbone curve is extracted accordingly. The accuracy of proposed methodology is established in comparison with previous results. Finally, the effect of geometric imperfection on vibration characteristics of stiffened plates is studied extensively.


Sign in / Sign up

Export Citation Format

Share Document