Effects of film coating thickness and drug layer uniformity on in vitro drug release from sustained-release coated pellets: A case study using terahertz pulsed imaging

2009 ◽  
Vol 382 (1-2) ◽  
pp. 151-159 ◽  
Author(s):  
Louise Ho ◽  
Yvonne Cuppok ◽  
Susanne Muschert ◽  
Keith C. Gordon ◽  
Michael Pepper ◽  
...  
Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


2019 ◽  
Vol 11 (2) ◽  
pp. 142-153
Author(s):  
Rutuja V. Deshmukh ◽  
Pavan Paraskar ◽  
S. Mishra ◽  
Jitendra Naik

Background: Nateglinide is an antidiabetic drug having biological half-life 1.5 h which shows a concise effect. Graphene oxide along with chitosan can be used as a nanocarrier for sustained release of Nateglinide. Objective: To develop Nateglinide loaded graphene oxide-chitosan nanocomposites and to evaluate for different characterization studies. Methods: Graphene Oxide (GO) was synthesized by improved hummer’s method and drug-loaded Graphene oxide - chitosan nanocomposites were prepared. Box Behnken design was used to carry out experiments. The nanocomposites were characterized for encapsulation efficiency and drug release. Morphology was studied using field emission scanning electron microscope and transmission electron microscope. An interaction between drug, polymer and GO was investigated by Fourier transform infrared spectroscopy and X-ray diffractometer along with in vitro drug release study. Results: The statistical evaluation of the design showed linear and quadratic models which are significant models for encapsulation efficiency (R1 0.6883, 0.9473) and drug loading (R2 0.6785, 0.9336), respectively. Fourier transform infrared spectroscopy showed the compatibility of GO, Chitosan and Nateglinide. X-ray diffractometer reveals the change in degree of crystallinity of drug. FE-SEM and TEM images confirmed the distribution of the drug within the nanocomposites. Design expert reveals that the concentration of GO has great influence on encapsulation efficiency. In Vitro drug release showed the sustained release of drug over the period of 12 h. Conclusion: GO-Chitosan nanocomposites can be used as a sustained release carrier system for Nateglinide to reduce dose frequency of drug as well as its probable side effects.


1998 ◽  
Vol 55 (2-3) ◽  
pp. 213-218 ◽  
Author(s):  
Martina B Sintzel ◽  
Jorge Heller ◽  
Steve Y Ng ◽  
Cyrus Tabatabay ◽  
Khadija Schwach-Abdellaoui ◽  
...  

Author(s):  
Meesala. Srinivasa Rao ◽  
M. S Chandra Goud ◽  
C. V. Reddy

Meloxicam has short biological half-life and is rapidly eliminated, frequent oral administration is necessary to maintain its therapeutic concentration, but this can increase chances of missing dose. This makes Meloxicam a good applicant for oral sustained release formulation. The objective of study was to develop in-situ gel formulations of Meloxicam for sustained release to reduce the dosing frequency in the treatment of rheumatoid arthritis. Method of Ion sensitive in-situ gelation was used in this study. Meloxicam In-situ gel formulations were prepared by varying concentrations of sodium alginate as a bio-degradable gel forming polymer, CaCl2 as a cross-linking agent and Chitosan/ HPMCK4/HPMCK15/Guar gum/Gellan gum/ Xantha gum/pectin were used as drug release rate controlling polymers. The formulations F11-F18 were assessed for Physical appearance, pH, in-vitro drug release, viscosity, in-vitro gelling capacity and drug content. FTIR, DSC and in-vivo drug kinetics studies was conducted for Meloxicam, excipients used and optimized formulation. Formulations showed an optimum viscosity that will allow ease of administration and swallowing. All formulations are shown pH between4.7-4.9, floating lag time was 2-3sec and floated for >12 hrs. In vitro drug release studies reporting that commercially available product Meloxicam SR has showed 99.92% drug release in 8 hrs and out of eight formulations F11 showing in-vitro drug release of 99.52% over a 12hrs extended period. FTIR studies revealed no interaction between drug and excipients used. The results of In-vivo kinetic studies are approving the better performance of the optimized formulation in comparison to marketed formulation, The Cmax, Tmax, half-life AUC values are confirming the same thing. In conclusion, Formulation (F11) was selected as optimized formulations could be offered as shows optimum sustained drug release compared to commercial formulation. Hence Meloxicam containing Chitosan as drug release controll


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


Author(s):  
MANGESH M KUMARE ◽  
GIRIDHAR R SHENDARKAR

Objective: The present research work was to develop and evaluate alprazolam sustained release tablet using Mardi gum, a comparative study on binding properties of gum and hydroxypropyl methylcellulose (HPMC) was performed. Methods: Formulation of alprazolam tablets (f1–f6) was done by direct compression method using 15%, 30%, and 45% concentration of gum as a natural binder, and HPMC was used as synthetic matrix forming agent. Microcrystalline cellulose was used as diluents, talc, and magnesium stearate as a lubricant and PVP K30 as the binder. The formulated batches were evaluated for parameters such as tablet thickness, % friability, hardness, weight variation, and in vitro drug release characteristics. The release information was fitted into different dynamics models to decide the release mechanism of the drug. Results: The results showed that all the parameters of the developed tablets (f1–f6) were in fulfillment with pharmacopeia limits. In vitro, drug release studies showed that formulation f1 had most controlled and sustained manner releaser with maximum drug release of 97.89±0.52% in 18 h with comparison to f2–f4 and f6 drug release is 98.12±0.55%, 97.24±0.57%, 98.16±0.74%, and 97.26±0.35%, respectively, in 16 h and f5 giving 97.89±0.85% release in 14 h. Conclusion: On the basis of obtained result, it can be concluded that Mardi gum can be used to sustain the drug release as a natural polymer in tablet dosage form.


2017 ◽  
Vol 4 (1) ◽  
pp. 37-49
Author(s):  
R Kaur ◽  
M Khurana ◽  
M Bindal ◽  
A Sharma

The present study is concerned with the development and characterization of bioadhesive carageenan gel encapsulating Amphotericin B and Lactobacillus acidophillus, prepared by graft co-polymeriztion against Candidal vaginitis. Intravaginal gel systems based on bioadhesive polymer (carrageenan) were characterized with respect to swelling index, bioadhesive strength, percent encapsulation and in vitro drug release antimicrobial studies. A marked increase in swelling index of gel encapsulating Lactobacillus was found to be 1.9±0.35. The percent encapsulation of drug was found to be 98.63%±.0.2% and that of Lactobacillus was 91.81 ±0.01. The viability was observed for interval of 6 hrs on trypton soya agar and showed that viability was highly conserved till 4 hrs. The antimicrobial study of gels encapsulating Amphotericin B and Lactobacillus showed that carageenan gel can inhibit Candida albicans upto a maximum extent. Bioadhesivity study also conducted for gels that showed a bioadhesivity of 84.66% ±.0.5% with drug, 88.66% ±.02% with Lactobacillus. In-vitro drug release showed a sustained type release of drug from the polymer i.e. there was initial burst of Amphotericin B up to 5 hours, after which there was a sustained release upto 10 days. Thus it has been concluded from the present study that bioadhesive gels encapsulating Amphotericin B can act as promising drug carriers along with Lactobacillus against candidal vaginitis.


Sign in / Sign up

Export Citation Format

Share Document