scholarly journals Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size

2016 ◽  
Vol 513 (1-2) ◽  
pp. 319-331 ◽  
Author(s):  
Mohammad Azad ◽  
Jacqueline Moreno ◽  
Ecevit Bilgili ◽  
Rajesh Davé
2021 ◽  
Vol 18 ◽  
Author(s):  
Yrysbaeva Aidana ◽  
Yibin Wang ◽  
Jie Li ◽  
Shuyue Chang ◽  
Ke Wang ◽  
...  

Background: Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications are approached in various ways through electrospun medicated nanofibers. The fast-dissolving oral drug delivery system (DDS) among them is one of the most promising routes in the near future for commercial applications. Methods: Related papers are investigated, including the latest research results, on electrospun nanofiber-based fast-dissolution DDSs. Results: Several relative topics have been concluded: 1) the development of electrospinning, ranging from 1-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) Selection of appropriate polymer matrices and drug carriers for filament formation; 3) Types of poorly water-soluble drugs ideal for fast oral delivery; 4) The methods for evaluating fast-dissolving nanofibers; 5) The mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) the important issues for further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems. Conclusions & Perspectives: The unique properties of electrospun-medicated nanofibers can be used as oral fast dissolving DDSs of poorly water-soluble drugs. However, some significant issues need to be investigated, such as scalable productions and solid dosage form conversions.


Author(s):  
Rajendra K. Surawase ◽  
Kamalkishor G. Baheti

Aim: The aim of this study was to study the solubility and dissolution kinetics of poorly water-soluble drugs simvastatin from its solid dispersion with different carriers by using fluidized bed processing technique. Methods: The effect of different surfactants such as Gelucire® 44/14, PVP- K30 and Poloxamer- 188 on solid dispersion dissolution and solubility of simvastatin was investigated. Solid dispersion is formed using various techniques with polymeric carrier to potentially enhance the solubility and dissolution rate such as fluidized bed processing, it will extend drug absorption, therefore the objectives were to make a comparative evaluation among different solid dispersions. Results: The simvastatin solid dispersion prepared by fluidized bed processing significantly enhanced in vitro dissolution and solubility relative to that of the unprocessed form. The dissolution profiles were correlated using various mathematical models such as Zero order, first order, Higuchi and Hixon Crowell model and the Zero order kinetics model gave better correlation results than the other models. Conclusion: Dissolution profile of simvastatin was significantly improved via complexation with Gelucire 44/14 as compared with the pure drug and other carriers using FBP processing is a highly effective strategy for enhancing the solubility and dissolution of poorly water-soluble drugs.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


2016 ◽  
Vol 105 (9) ◽  
pp. 2864-2872 ◽  
Author(s):  
Sara B.E. Andersson ◽  
Caroline Alvebratt ◽  
Jan Bevernage ◽  
Damien Bonneau ◽  
Claudia da Costa Mathews ◽  
...  

2011 ◽  
Vol 403 (1-2) ◽  
pp. 162-169 ◽  
Author(s):  
Chao Wu ◽  
Zhongyan Wang ◽  
Zhuangzhi Zhi ◽  
Tongying Jiang ◽  
Jinghai Zhang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


Sign in / Sign up

Export Citation Format

Share Document