Role of strain-rate sensitivity in the crystal plasticity of hexagonal structures

2007 ◽  
Vol 23 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Benoît Beausir ◽  
László S. Tóth ◽  
Kenneth W. Neale
2021 ◽  
Vol 8 ◽  
Author(s):  
Tomas Manik ◽  
Knut Marthinsen ◽  
Kai Zhang ◽  
Arash Imani Aria ◽  
Bjørn Holmedal

In the present work, the deformation textures during flat profile extrusion from round billets of an AA6063 and an AA6082 aluminium alloy have been numerically modeled by coupling FEM flow simulations and crystal plasticity simulations and compared to experimentally measured textures obtained by electron back-scatter diffraction (EBSD). The AA6063 alloy was extruded at a relatively low temperature (350°C), while the AA6082 alloy, containing dispersoids that prevent recrystallization, was extruded at a higher temperature (500°C). Both alloys were water quenched at the exit of the die, to maintain the deformation texture after extrusion. In the center of the profiles, both alloys exhibit a conventional β-fiber texture and the Cube component, which was significantly stronger at the highest extrusion temperature. The classical full-constraint (FC)-Taylor and the Alamel grain cluster model were employed for the texture predictions. Both models were implemented using the regularized single crystal yield surface. This approach enables activation of any number and type of slip systems, as well as accounting for strain rate sensitivity, which are important at 350°C and 500°C. The strength of the nonoctahedral slips and the strain-rate sensitivity were varied by a global optimization algorithm. At 350°C, a good fit could be obtained both with the FC Taylor and the Alamel model, although the Alamel model clearly performs the best. However, even with rate sensitivity and nonoctahedral slip systems invoked, none of the models are capable of predicting the strong Cube component observed experimentally at 500°C.


2010 ◽  
Vol 163-167 ◽  
pp. 4590-4594
Author(s):  
Shao Wei Hu

Discontinuous yield of material as Jerky flow was explained. Then, the strain rate sensitivity (SRS) and instability criterion was given out. Some tests were carried out at constant stress rate, so Jerky flow is manifested as a discontinuity in the stress-strain curves in form of strain bursts. Finally, the dynamic behaviors of specimens during instability of thermal origin were simulated with COLSYS software, whose results are good with test ones.


2017 ◽  
Vol 60 (3) ◽  
pp. 494-501
Author(s):  
Yu. V. Solov’eva ◽  
V. A. Starenchenko ◽  
O. D. Pantyukhova ◽  
S. V. Starenchenko ◽  
A. N. Solov’ev ◽  
...  

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
T. A. Duffey

Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME code (Sec. VIII, Div. 3) and 2008 and 2009 Addenda, and these are now a part of the 2010 code. There is now a local damage-mechanics based strain-exhaustion limit, including the well-known global plastic collapse limit. Moreover, Code Case 2564 (Sec. VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement-controlled and short-duration dynamic pressure loading is given. This instability condition is evaluated for six plastic and viscoplastic constitutive relations. The role of strain rate sensitivity on the instability point is investigated. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared with the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2990
Author(s):  
Rafael Sancho ◽  
Javier Segurado ◽  
Borja Erice ◽  
María-Jesús Pérez-Martín ◽  
Francisco Gálvez

The flow stress behaviour of a directionally solidified nickel-base superalloy, MAR-M247, is presented through the combination of experiments and crystal-plasticity simulations. The experimental campaign encompassed quasi-static and dynamic testing in the parallel and perpendicular orientation with respect to the columnar grains. The material showed low strain-rate sensitivity in all cases. Virtual samples were generated with DREAM3d and each grain orientation was established according to the DS nature of the alloy. The elasto-visco-plastic response of each crystal is given by phenomenological-base equations, considering the dislocation–dislocation interactions among different slip systems. The hardening-function constants and the strain-rate sensitivity parameter were fitted with the information from tests parallel to the grain-growth direction and the model was able to predict with accuracy the experimental response in the perpendicular direction, confirming the suitability of the model to be used as a tool for virtual testing. Simulations also revealed that in oligocrystalline structures of this type, the yield-strength value is controlled by the grains with higher Schmid factor, while this influence decreases when plastic strain increases. Moreover, the analysis of the micro-fields confirmed that grains perpendicular to the loading axis are prone to nucleate cavities since the stresses in these regions can be twice the external applied stress.


Sign in / Sign up

Export Citation Format

Share Document