hemispherical punch
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
M. Hossein Sehhat ◽  
Ali Mahdianikhotbesara ◽  
Mohammadjafar Hadad

Abstract One of the unique characteristics of sheet metals is their formability, which is determined by the forming limit diagrams. These diagrams specify the maximum deformation limit before part’s failure. For several applications of metal sheets, they have to be in the perforated format. Existence of holes in the perforated sheets may adversely deteriorate the forming limit of metal sheets. In this study, the effect of perforated sheets’ hole size and hole layout on their formability are investigated. Several specimens of St12 steel with 0.6 mm thickness, different widths, two various hole sizes of 2 and 4 mm, and two layouts of triangular and square were prepared. The specimens were tested using Nakajima test (stretch with a hemispherical punch) to generate the forming limit diagrams. It was observed that both the diameter and layout of the punched holes have a significant effect on the formability of the perforated sheets. The perforated sheets with triangular hole layout showed higher forming limits due to their larger ligament ratios.


2021 ◽  
Author(s):  
M. Hossein Sehhat ◽  
Ali Mahdianikhotbesara ◽  
Mohammadjafar Hadad

Abstract One of the unique characteristics of sheet metals is their formability, which is determined by the forming limit diagrams. These diagrams specify the maximum deformation limit before part’s failure. For several applications of metal sheets, they have to be in the perforated format. Existence of holes in the perforated sheets may adversely deteriorate the forming limit of metal sheets. In this study, the effect of perforated sheets’ hole size and hole layout on their formability are investigated. Several specimens of St12 steel with 0.6 mm thickness, different widths, two various hole sizes of 2 and 4 mm, and two layouts of triangular and square were prepared. The specimens were tested using Nakajima test (stretch with a hemispherical punch) to generate the forming limit diagrams. It was observed that both the diameter and layout of the punched holes have a significant effect on the formability of the perforated sheets. The perforated sheets with triangular hole layout showed higher forming limits due to their larger ligament ratios.


2021 ◽  
Vol 883 ◽  
pp. 135-142
Author(s):  
Jan Hafenecker ◽  
Richard Rothfelder ◽  
Michael Schmidt ◽  
Marion Merklein

Hybrid components produced by two or more different process technologies grant the possibility to compensate the drawbacks of the used processes. The combination of additive manufacturing (AM) and forming offers geometrical freedom in extensions of geometrical simple parts in a cost-efficient way. Unlike the combination of bulk metal forming and AM, sheet metal forming and AM is less investigated. Especially for Ti-6Al-4V, which is widely used in AM but has a low formability at room temperature, research is still needed. In this study, the formability of hybrid parts made of Ti‑6Al‑V consisting of sheet material and additively manufactured elements (AME) is investigated for a hemispherical punch geometry. Thus, a designed tool for forming of hybrid parts at elevated temperatures is used. First investigations with a specially designed stretch forming tool demonstrate the distinct influence of the additively manufactured bodies on the stretch forming process of hybrid parts made of Ti‑6Al‑4V. Namely, the achievable drawing depth is reduced for hybrid parts as the functional elements are placed in the area of highest stresses, distorting material flow.


2021 ◽  
Author(s):  
Imen Gnaba ◽  
Damien Soulat ◽  
Xavier Legrand ◽  
Peng Wang

The originality of this work consists of studying the stamping behaviour of tufted and un-tufted multi-layer carbon preforms. Several tufted preforms with different stratifications have been manufactured. The stamping test was carried out using a hemispherical punch and conducted at two blank-holder pressures (0.05 and 0.2 MPa). The experimental data show that the addition of tufting yarn, the number of layers and the blank-holder pressure significantly affected the forming behaviour: the tufted preform presents a higher punch force, lower material drawin and shear angles with significant structural defects than the un-tufted preform. The increase of the blank-holder pressure increases all these characteristics and emphasizes the structural defects on the fibrous reinforcements. Similarly, the transition from two layers to four layers lamination at the same blank-holder pressure is followed by an increase of the punch force, reducing the material draw-in and the shear angles especially those measured at the transient zone, and causes more structural defects on all stamped preforms. Therefore, two localized tufting configurations, Right Localized Tufted and Inclined Localized Tufted, at the stamping transition area have been proposed. The results show that these two configurations present a minimum punch force and a maximum material draw-in similar to those measured on the un-tufted structure. The shear angles are much greater than those recorded on the conventionally (fully) tufted preform. Thus, the localized tufting in the most stressed areas proves to be the most suitable solution for the stamped preforms.


2020 ◽  
Vol 321 ◽  
pp. 04027
Author(s):  
J.S. Kwame ◽  
E. Yakushina ◽  
P. Blackwell

Titanium and its alloys are difficult to form, particularly at room temperature, due to their crystallographic structure and limited availability of slip systems. Such limited formability could be exacerbated by virtue of the technique used to cut the sheet. Forming limit diagrams will not necessarily recognize such effects, which can lead to failures during forming trials. An example of a situation where this could be demonstrated is in sheet with pre-fabricated holes. This work used a hemispherical punch to stretch in-plane a 20mm diameter hole prepared with laser, EDM and AWJ cutting techniques in order to quantify the edge formability of the material. It was identified that, the edge surface conditions have a major impact on the edge formability of the material. The edges of the material prepared with EDM showed very high formability tendencies compared with AWJ and laser cutting. The work proposed an alternative characterization method that could be adopted for edge formability assessment.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Archimede Forcellese ◽  
Tommaso Mancia ◽  
Michela Simoncini

The present work aims at studying the tensile behavior and formability of pre-painted steel sheets. To this purpose, uniaxial tensile and hemispherical punch tests were performed in order to analyze the deformation behavior of pre-painted sheets under uniaxial stretching and biaxial balanced stretching conditions, respectively. Tests were interrupted in order to obtain different strain levels until fracture; at each strain level reached, the occurrence of superficial damages on the paint coating was detected; thinning of the different layers of the pre-painted sheet was also measured. It was observed that the degree of damage on the paint coating depends on the loading condition; in particular, under uniaxial stretching, the paint coating is able to follow the steel sheet during deformation up to the onset of the necking, whilst, under biaxial balanced stretching, coating exhibits superficial damages before fracture of the sheet.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1783 ◽  
Author(s):  
Tao Huang ◽  
Mei Zhan ◽  
Kun Wang ◽  
Fuxiao Chen ◽  
Junqing Guo ◽  
...  

In this paper, the initial values of damage parameters in the Gurson–Tvergaard–Needleman (GTN) model are determined by a microscopic test combined with empirical formulas, and the final accurate values are determined by finite element reverse calibration. The original void volume fraction (f0), the volume fraction of potential nucleated voids (fN), the critical void volume fraction (fc), the void volume fraction at the final failure (fF) of material are assigned as 0.006, 0.001, 0.03, 0.06 according to the simulation results, respectively. The hemispherical punch stretching test of commercially pure titanium (TA1) sheet is simulated by a plastic constitutive formula derived from the GTN model. The stress and strain are obtained at the last loading step before crack. The forming limit diagram (FLD) and the forming limit stress diagram (FLSD) of the TA1 sheet under plastic forming conditions are plotted, which are in good agreement with the FLD obtained by the hemispherical punch stretching test and the FLSD obtained by the conversion between stress and strain during the sheet forming process. The results show that the GTN model determined by the finite element reverse calibration method can be used to predict the forming limit of the TA1 sheet metal.


2017 ◽  
Vol 744 ◽  
pp. 233-238
Author(s):  
Jiang Min Xu ◽  
Chuan Lin Hu

This study aimed to analyze the impact of the weld location of TWBs of different thickness ratios on dissimilar steels, particularly on its height, which is known as the rigid hemispherical punch bulging formability. Laser welding was conducted on St12 (0.8 mm) and St16 (1.2 mm) samples using three different width ratios (1:2, 1:1, and 2:1). Then, the microstructure and microhardness of the TWBs and welded joints were tested. Finally, a rigid hemispherical punch bulging formability test was conducted to obtain the bulging formability of the TWBs for the study. Further, the results were compared to the bulging formability of the parent metal. The results show that the microstructure of welds contain all types of ferrites, bainites and lath martensites. The hardness on both sides of the weld is different, and it appears to be an asymmetric distribution. The hardness of the weld seam and heat-affected zone is much higher than the parent metal. The limit dome of the TWBs is lower for each side of the parent metal. When the weld location is parallel to the direction of the principal strain, the bulging formability of TWBs of different thickness ratios is much better. Under certain combinations of material and thickness, the thicker the plate is, the better the bulging formability of the different thickness TWBs is.


2015 ◽  
Vol 818 ◽  
pp. 213-216
Author(s):  
Miroslav Tomáš ◽  
Ján Slota ◽  
Emil Spišák ◽  
Juraj Hudák

The paper deals with measurement of limit strains for tinplate TS 245 made by US Steel with nominal thickness 0.3 mm. The FLC curve has been measured by implementation of Nakajima test on testing device Erichsen 145-60. The Nakajima test has been measured according to EN ISO 12004-2. Limit strains have been measured using 3D photogrammetric system Argus by GOM. Forming limit curve was evaluated in the software Argus. During test, some problems have been solved concerning friction on hemispherical punch which affected fracture position on the dome. Reached FLC curve was implemented in material database of PAM-Stamp 2G simulation software.


2014 ◽  
Vol 622-623 ◽  
pp. 459-466 ◽  
Author(s):  
Michela Simoncini ◽  
Lorenzo Panaccio ◽  
Archimede Forcellese

The present investigation aims at studying post-welding forming operations of friction stir welded AA1050 aluminium thin sheets. A preliminary investigation has allowed to define the rotational and welding speed values leading to friction stir welded joints with high mechanical properties. Then, formability and elastic springback were evaluated using the hemispherical punch and bending tests, respectively. A microstructural investigation has allowed to relate the mechanical properties of joints to microstructure. Finally, the friction stir welded assemblies were subjected to air bending and stamping experiments in order to evaluate their attitude to undergo to sheet metal forming operations.


Sign in / Sign up

Export Citation Format

Share Document