A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys

2016 ◽  
Vol 87 ◽  
pp. 154-180 ◽  
Author(s):  
Hongwei Li ◽  
Xinxin Sun ◽  
He Yang
Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2007 ◽  
Vol 558-559 ◽  
pp. 1213-1218
Author(s):  
Cheng Wu Zheng ◽  
Na Min Xiao ◽  
Dian Zhong Li ◽  
Yi Yi Li

The kinetics and microstructure evolution during static recrystallization (SRX) of hot-deformed austenite in a low carbon steel are simulated by coupling a cellular automaton (CA) model with a crystal plasticity finite element model (CPFEM). The initial deformed characteristics, which include the stored energy of deformation and the crystallographic orientation induced by a plane strain hot compression are simulated using a crystal plasticity finite element model. These data are mapped onto the CA regular lattices as the initial parameters for SRX simulation. The coupled simulation results reveal that the heterogeneous distribution of the stored energy of deformation results in non-uniform nucleation and a slower kinetics. The influence of non-uniform distribution in stored energy on the SRX kinetics and microstructure evolution is discussed based on a microstructural path (MP) analysis.


Sign in / Sign up

Export Citation Format

Share Document