A consistent viscoelastic formulation for the numerical analysis of steady state rolling tires

2018 ◽  
Vol 101 ◽  
pp. 24-41 ◽  
Author(s):  
Mario A. Garcia ◽  
Michael Kaliske
1995 ◽  
Vol 22 (6) ◽  
pp. 547-553 ◽  
Author(s):  
T.A. Angelov ◽  
A.I. Baltov ◽  
A.G. Nedev

Friction ◽  
2021 ◽  
Author(s):  
Yonghun Yu ◽  
Junho Suh

AbstractIn this study, a three-dimensional thermo-elastic model that considers the interaction of mechanical and thermal deformation is developed using a semi-analytic method for steady-state rolling contact. Creepage types in all directions are considered in this model. For verification, the numerical analysis results of shear traction and temperature increase are compared separately with existing numerical results, and the consistency is confirmed. The analysis results include heat flux, temperature increase, contact pressure, and shear traction. Under severe rolling conditions, the thermal effect changes the behavior of the contact interface significantly. Furthermore, the effects of creepage, rolling speed, and conformity under different rolling and creep conditions are investigated.


2016 ◽  
Vol 44 (3) ◽  
pp. 174-190 ◽  
Author(s):  
Mario A. Garcia ◽  
Michael Kaliske ◽  
Jin Wang ◽  
Grama Bhashyam

ABSTRACT Rolling contact is an important aspect in tire design, and reliable numerical simulations are required in order to improve the tire layout, performance, and safety. This includes the consideration of as many significant characteristics of the materials as possible. An example is found in the nonlinear and inelastic properties of the rubber compounds. For numerical simulations of tires, steady state rolling is an efficient alternative to standard transient analyses, and this work makes use of an Arbitrary Lagrangian Eulerian (ALE) formulation for the computation of the inertia contribution. Since the reference configuration is neither attached to the material nor fixed in space, handling history variables of inelastic materials becomes a complex task. A standard viscoelastic material approach is implemented. In the inelastic steady state rolling case, one location in the cross-section depends on all material locations on its circumferential ring. A consistent linearization is formulated taking into account the contribution of all finite elements connected in the hoop direction. As an outcome of this approach, the number of nonzero values in the general stiffness matrix increases, producing a more populated matrix that has to be solved. This implementation is done in the commercial finite element code ANSYS. Numerical results confirm the reliability and capabilities of the linearization for the steady state viscoelastic material formulation. A discussion on the results obtained, important remarks, and an outlook on further research conclude this work.


2003 ◽  
Vol 31 (3) ◽  
pp. 189-202 ◽  
Author(s):  
D. Zheng

Abstract A procedure based on steady state rolling contact Finite Element Analysis (FEM) has been developed to predict tire cross section tread wear profile under specified vehicle driving conditions. This procedure not only considers the tire construction effects, it also includes the effects of materials, vehicle setup, test course, and driver's driving style. In this algorithm, the vehicle driving conditions are represented by the vehicle acceleration histogram. Vehicle dynamic simulations are done to transform the acceleration histogram into tire loading condition distributions for each tire position. Tire weight loss rates for different vehicle accelerations are generated based on a steady state rolling contact simulation algorithm. Combining the weight loss rate and the vehicle acceleration histogram, nine typical tire loading conditions are chosen with different weight factors to represent tire usage conditions. It is discovered that the tire tread wear rate profile is changing continuously as the tire is worn. Simulation of a new tire alone cannot be used to predict the tire cross-section tread wear profile. For this reason, an incremental tread wear simulation procedure is performed to predict the tire cross section tread wear profile. Compared with actual tire cross-section tread wear profiles, good results are obtained from the simulations.


Author(s):  
Xiang Li ◽  
Liuniu Guo ◽  
Tianchen Lang ◽  
Daorong Lu ◽  
Khalil Alluhaybi ◽  
...  

1998 ◽  
Vol 22 (5) ◽  
pp. 395-403 ◽  
Author(s):  
L. Nasdala ◽  
M. Kaliske ◽  
A. Becker ◽  
H. Rothert

Sign in / Sign up

Export Citation Format

Share Document