inelastic material
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 4 ◽  
pp. 61-68
Author(s):  
Nina Yakovenko ◽  
◽  
Andrey Bondarchuk ◽  
Oksana Kovalchuk ◽  
◽  
...  

Axisymmetric problem of heat pulse irradiation of a cylindrical solid is considered. Nonlinear behavior of the material is described by the generalized Bodner-Partom model of flow. The nature of generalization lies in applying the rule of mixtures for the determination of parameters of the model responsible for yield point and ultimate strength. The considered model enables one to estimate the residual stress-strain state more exactly. During subsequent in-service loading of cylindrical solids, this state strongly affects the fatigue resistance of elements. The problem is solved by the time step integration method, iterative method, and finite element method. In each time step, we realize a double iteration process. The first is connected with the integration of the system of nonlinear equations of flow, the second with the solution of equations of motion and heat conduction. The calculations are performed on a grid FEM, especially in the region of irradiation, for the correct modeling of thermomechanical behavior of the material. The grid parameters are chosen with the help of the criterion of practical convergence of the solutions. The investigation of the stress-strain state of an inelastic material with regard for the dependence of parameters of the flow model on the phase composition of a material is carried out by using of numerical simulation. The main result is the following: qualitative and quantitative effects of phase composition influence on inelastic characteristics are established, namely change of tensile residual stresses on compression. The results obtained in the work can be used in calculations of parameters of surface hardening technologies.


Author(s):  
Stephan Weiser ◽  
Thomas Lehmann ◽  
Ralf Landgraf ◽  
Niels Goldberg ◽  
Hendrik Donner ◽  
...  

AbstractIn this paper, experimental and numerical investigations on cord–elastomer composites are presented. A finite-element model is introduced, which was developed within the framework of an industrial project. The model is able to simulate an elastomer matrix with inserted cords as load bearing elements and to predict the strains and stresses in cord and elastomer sections. The inelastic material behavior of the elastomer matrix and the yarns is described by corresponding material models suitable for large deformation processes. With the help of a specially developed demonstrator bellows, which is similar to an air spring, the simulation results are compared with experiments. For this purpose, the digital image correlation method is used to determine the deformations on the outer surface of the demonstrator bellows and to calculate the strains on and between the cords. The comparison of the results shows that the employed simulation method is very well suited to predict the strains in these cord–elastomer composites.


Author(s):  
Imadeddin Zreid ◽  
Ronny Behnke ◽  
Michael Kaliske

AbstractForming of tires during production is a challenging process for Lagrangian solid mechanics due to large changes in the geometry and material properties of the rubber layers. This paper extends the Arbitrary Lagrangian–Eulerian (ALE) formulation to thermomechanical inelastic material models with special consideration of rubber. The ALE approach based on tracking the material and spatial meshes is used, and an operator-split is employed which splits up the solution within a time step into a mesh smoothing step, a history remapping step and a Lagrangian step. Mesh distortion is reduced in the smoothing step by solving a boundary value problem. History variables are subsequently remapped to the new mesh with a particle tracking scheme. Within the Lagrangian steps, a fully coupled thermomechanical problem is solved. An advanced two-phase rubber model is incorporated into the ALE approach, which can describe green rubber, cured rubber and the transition process. Several numerical examples demonstrate the superior behavior of the developed formulation in comparison to purely Lagrangian finite elements.


Author(s):  
Erik Oelsch ◽  
Ralf Landgraf ◽  
Lysander Jankowsky ◽  
Martin Kausch ◽  
Stefan Hoyer ◽  
...  

Abstract3D printing opens up new possibilities for the production of polymeric structures that would not be possible with injection molding. However, it is known that the manufacturing method might have an impact on the mechanical properties of manufactured components. To this end, the mechanical behavior of test specimens made of thermoplastic polyurethane is compared for two different manufacturing methods. In particular, the SEAM technology (screw extrusion additive manufacturing) is compared to a conventional injection molding process. Uniaxial tension test specimens from both manufacturing methods are analyzed in two testing sequences (multi-hysteresis tests to analyze inelastic properties and uniaxial tension until rupture). To get as less perturbation as possible, the 3D-printed samples are printed with only one strand per layer. Moreover, a correction approach based on optical measurements is applied to determine the true cross-sectional area of the test specimens. The mechanical tests reveal that the inelastic material behavior is the same for both manufacturing methods. Instead, 3D-printed specimens show lower maximal stretch values at rupture and an increased variance in the results, which is related to the surface structure of 3D-printed specimens.


Author(s):  
Dalbir Singh ◽  
C. Ganesan ◽  
M.S. Nisha

Usage of composites has increased in many fields of application ranging from space to repair and rehabilitation. Damage of composites in the form of cracking or de-lamination is quite common during its life. Performance of the composites after damage with or without repair is an indicator to one of its sustainability aspects. Here in this study, the damage parameter from the point of cracking is studied beyond normal yield considerations using inelastic material model to assess its remaining life. It is observed that, based on the load quantity of damage occurrence, sustainability is measured as life cycle analysis in terms of remaining life that can change significantly if one accounts for inelastic material behaviour.


Author(s):  
Adil Rafiq

Numerical modeling of brick masonry behaviour under different performance conditions has always remained a challenging task. Several modeling strategies have been developed for masonry, in general, through the course of time that have been simplified to speed up modeling and analysis duration. This ranges from a simplified strut model to a highly discontinuous micro-scale nonlinear model. With the current advent of high-speed computing and modeling tools, more realistic numerical modeling of masonry is now possible. In this paper, the strategy adopted is based on macro-scale modeling, where isotropic material properties are considered for the homogenous continuum. ABAQUS is used as a state-of-the-art finite element-based analysis and modeling tool. The Concrete Damage Plasticity (CDP) model is used for simulating inelastic material behaviour of brick and mortar, which is available in the ABAQUS library. This material model can be used in both implicit and explicit schemes of integration but the explicit procedure is highly preferred as it overcomes the convergence issues. Various parameters required for CDP modeling of brick and mortar are adapted from literature. The model is assembled in two parts, first part is modeled for masonry with both elastic and plastic properties, while the other part simulates a rigid beam at the top of the masonry part to create a uniform in-plane shear loading effect. The masonry part has been fixed at the bottom with free vertical ends, while horizontal in-plane displacement was applied to the top rigid beam. The load-displacement curves were generated from these models for monotonic push, to compare them with the envelopes of experimental results, loaded similarly. Since brick masonry is a highly disjointed material, it is a complicated procedure to develop an exact model and predict its exact behaviour. However, the overall representative load-displacement curve developed numerically was in good agreement with the ones produced experimentally.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4548
Author(s):  
Gyeong-Hoi Koo ◽  
Ji-Hyun Yoon

In this paper, the inelastic material models for Type 316H stainless steel, which is one of the principal candidate materials for elevated temperature design of the advanced high temperature reactors (HTRs) pressure retained components, are investigated and the required material parameters are identified to be used for both elasto-plastic models and unified viscoplastic models. In the constitutive equations of the inelastic material models, the kinematic hardening behavior is expressed with the Chaboche model with three backstresses, and the isotropic hardening behavior is expressed by the Voce model. The required number of material parameters is minimized to be ten in total. For the unified viscoplastic model, which can express both the time-independent plastic behavior and the time-dependent viscous behavior, the constitutive equations have the same kinematic and isotropic hardening parameters of the elasto-plastic material model with two additional viscous parameters. To identify the material parameters required for these constitutive equations, various uniaxial tests were carried out at isothermal conditions at room temperature and an elevated temperature range of 425–650 °C. The identified inelastic material parameters were validated through the comparison between tests and calculations.


Sign in / Sign up

Export Citation Format

Share Document