scholarly journals Explicit achievement motive strength determines effort-related myocardial beta-adrenergic activity if task difficulty is unclear but not if task difficulty is clear

Author(s):  
Florence Mazeres ◽  
Kerstin Brinkmann ◽  
Michael Richter
1981 ◽  
Vol 240 (5) ◽  
pp. H697-H703 ◽  
Author(s):  
J. E. Lock ◽  
P. M. Olley ◽  
F. Coceani

The influence of alveolar hypoxia on pulmonary vascular adrenergic receptors was studied in conscious newborn lambs. In control animals, pulmonary vessels were directly constricted by epinephrine and norepinephrine, but were unaffected by isoproterenol. Pulmonary resistance (PVR) was also unaffected by propranolol, thus implying minimal beta-receptor activity under normoxic conditions. Hypoxia raised PVR but also modified the pulmonary vascular responses to catecholamines: isoproterenol became a dilator, whereas the constrictor effects of epinephrine and norepinephrine were abolished. Although beta-blockade did not alter base-line PVR, propranolol increased the constrictor response to hypoxia, implying that hypoxia increases beta-adrenergic activity or reactivity in the pulmonary circulation. Consistent with this hypothesis are the following: 1) in alpha-blocked lambs, epinephrine was without local effects during normoxia, but caused vasodilation during hypoxia; 2) the absent constrictor response to epinephrine during hypoxia is fully restored by propranolol; and 3) although alpha-blockade blunts the hypoxic constrictor response, the full response is restored when beta-blockade is added. These results indicate that the hypoxic constrictor response is partially opposed by increased beta-mediated vasodilation. These enhanced beta-receptor effects are due, at least in part, to increased beta-receptor reactivity of unknown mechanism.


1980 ◽  
Vol 124 (2) ◽  
pp. 254-255 ◽  
Author(s):  
M.S. Rao ◽  
B.C. Bapna ◽  
P.L. Sharma ◽  
K.S.N. Chary ◽  
S. Vaidyanathan

1977 ◽  
Vol 43 (4) ◽  
pp. 612-616 ◽  
Author(s):  
R. J. Porcelli ◽  
A. T. Viau ◽  
N. E. Naftchi ◽  
E. H. Bergofsky

The role of the adrenergic receptor in mediating pulmonary vascular responses to gaseous and humoral agents was investigated by use of epinephrine injections in the perfused feline pulmonary circulation. Alteration of the balance between alpha- and beta-adrenergic activity was quantified by measurement of decreasing vasoconstrictor activity to epinephrine and rising lobar tissue 3′,5′-adenosine cyclic monophosphate (cAMP) levels. The increased beta-adrenergic activity thus generated was associated with marked reductions in the pulmonary vasoconstrictor responses to hypoxia, hypercapnic acidosis, and histamine, but not to serotonin. Repeated pulmonary vasodilations or increases in blood, but not pulmonary tissue, levels of cAMP induced by theophylline doses, which would not necessarily affect the beta-adrenergic activity, did not alter the pulmonary vasoconstrictor responses to hypoxia, hypercapnia, or histamine. These data support the significant role which the adrenergic system plays in mediating pulmonary vasoconstrictor responses to certain specific gaseous and humoral agents, and the specificity with which this mediation occurs serves to link hypoxia and histamine together so that the latter could serve as a mediator of the former.


1989 ◽  
Vol 256 (3) ◽  
pp. R653-R658 ◽  
Author(s):  
S. L. Welle ◽  
K. S. Nair ◽  
R. G. Campbell

The effect of the beta-adrenergic antagonist propranolol on the increase in resting metabolic rate (RMR) induced by overfeeding was examined to determine whether increased beta-adrenergic activity contributes to this response. Six male subjects who were overfed with carbohydrate (1,600 excess kcal/day) for 10 days without drug treatment (control group) had increases (compared with values after 10 days of weight maintenance) in RMR after 6 days [0.24 +/- 0.06 kcal/min (22%)] and 10 days of overfeeding [0.17 +/- 0.03 kcal/min (15%)]. Eight male subjects were given a weight-maintenance diet for 10 days with oral propranolol treatment (40-60 mg every 6 h) over the last 7 days of this period. Five of these subjects were then overfed for 10 days, and three remained on the weight-maintenance diet; propranolol treatment continued until the end of the study. Propranolol significantly reduced RMR (mean 9%) before the onset of overfeeding but did not prevent increases in RMR after 6 days [0.18 +/- 0.05 kcal/min (16%)] and 10 days of overfeeding [0.17 +/- 0.03 kcal/min (15%)]. In the subjects who remained on the weight-maintenance diet throughout the study, there was no reversal of propranolol's initial reduction of RMR that would have falsely elevated the overfeeding effect. These data provide further evidence that the increase in RMR induced by overfeeding in humans is not mediated by increased beta-adrenergic activity.


Sign in / Sign up

Export Citation Format

Share Document