Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels

2009 ◽  
Vol 86 (12) ◽  
pp. 787-797 ◽  
Author(s):  
J. Xu ◽  
Z.L. Zhang ◽  
E. Østby ◽  
B. Nyhus ◽  
D.B. Sun
Author(s):  
Jie Xu ◽  
Zhiliang Zhang ◽  
Erling O̸stby ◽  
Ba˚rd Nyhus ◽  
Dongbai Sun

Ductile crack growth plays an important role in the analysis of the fracture behavior of structures. Crack-like defects in pipe systems often develop during fabrication or in-service operation. The standard single edge notched bending (SENB) specimen with crack depth of a/W = 0.5 has a significantly higher geometry constraint than actual pipes with circumferential surface cracks, which therefore introduces a high degree of conservatism in engineering critical assessment (ECA) of pipes. Moreover, it is difficult to know how conservative the results are, because the geometry constraint is highly material-dependent. For circumferential surface flaws in pipes, the single edge notched tension (SENT) specimen has frequently been used because it has a geometry constraint in front of the crack tip that is similar to the cracks in pipes. Much work has been carried out on tensile testing for the SENT specimen as an alternative fracture mechanics specimen of pipes. In studying fully circumferential cracks in pipes, the crack geometry, applied load and boundary conditions are symmetrical about the axis of revolution. A typical radial plane containing the axis of rotational symmetry can represent these axisymmetric bodies; therefore the three-dimensional analysis can be reduced to a two-dimensional problem. This work systemically applies 2D axisymmetric models to study the ductile crack growth behavior of pipes with fully internal and external circumferential cracks under large scale yielding conditions. The complete Gurson model (CGM) developed and implemented by Zhang was utilized to predict the ductile crack growth resistance curves. Pipes with various internal pressure, diameter-to-thickness ratios, crack depths and material properties, as denoted by hardening and initial void volume fraction, have been analyzed. The results have been compared with those of corresponding clamped-loaded SENT (with same crack depth) and standard SENB specimens. It clearly indicates that the SENT specimen is a good representation of circumferentially flawed pipes and an alternative to the conventional standard SENB specimen for the fracture mechanics testing in ECA of pipes.


Author(s):  
Peter James ◽  
Mike Ford

Within the EU 7th framework programme, STYLE, a number of large-scale tests have been performed. One of these tests, Mock-Up 2 (MU-2), was performed on a through wall crack located at a repair weld adjacent to a multi-pass narrow-gap weld. The aim of MU-2 was to investigate ductile crack growth under conditions with significant levels of residual stress. As part of the materials testing programme, low-constraint fracture specimens (three-point bend specimens with a/t=0.1) were extracted from the weld to test the weld materials fracture toughness. An overview of these tests is provided here. However, these low constraint tests demonstrated somewhat unusual fatigue crack growth on inserting the crack, leading to the crack depth being shorter in the centre of the specimens to the outside. Subsequently, although it has not been possible to use these specimens to determine the materials J-R curve, it does provide a features test for ductile modelling with the Gurson-Tvergaard-Needleman (GTN) local approach model for ductile crack growth. This paper provides an overview of the modelling associated to understand these observations, including an estimate of the retained residual stress, fatigue growth estimates and subsequent ductile modelling. An overview of the calibration of the GTN model is also provided using the weld material’s tensile tests, high constraint compact-tension tests and MU-2.


2014 ◽  
Vol 3 ◽  
pp. 1505-1511 ◽  
Author(s):  
Yang Li ◽  
Weimin Mao ◽  
Lingkang Ji ◽  
Chunyong Huo

Author(s):  
Tomoki Shinko ◽  
Masato Yamamoto

Abstract A utilization of a miniature compact tension (Mini-C(T)) specimen is expected to enable effective use of limited remaining surveillance specimens for the structural integrity assessment of a Reactor Pressure Vessel (RPV). For developing a direct fracture toughness evaluation method using Mini-C(T) specimen in the upper-shelf temperature range as well as ductile-brittle transition temperature range, this study is aimed to experimentally characterize the Mini-C(T) specimen’s size effect on ductile crack growth resistance and interpolate its mechanism. Mini-C(T) specimen and 0.5T-C(T) specimen were prepared from a Japanese RPV steel SQV2A, and the ductile crack growth tests were conducted on them at room temperature. As a result, the crack growth resistance of Mini-C(T) and 0.5T-C(T) specimens are comparable if the crack extension Δa is less than 0.5 mm. On the other hand, if Δa exceeds 0.5 mm, the crack growth resistance of Mini-C(T) specimen becomes lower than that of 0.5T-C(T) specimen. The measurements of stretch zone width and depth support the fact that the fracture toughness for ductile crack initiation of Mini-C(T) specimen is lower than that of 0.5T-C(T) specimen. From the rotational (crack mouth opening) deformation of Mini-C(T) specimen was measured by simultaneously measuring load-line and front face displacements. The distance between the crack tip and the rotation center of Mini-C(T) specimen is smaller than that of 0.5T-C(T) specimen during the test. Furthermore, The plastic zone in front of the crack tip reaches the rotation center up to the crack extension of Δa = 0.3 mm on Mini-C(T) specimen, indicating that the mechanism of the specimen size effect of Mini-C(T) specimen is likely a plastic constraint due to the influence of the rotation center locating near the crack tip. This suggests that the specimen size effect of Mini-C(T) specimen on ductile crack growth resistance is expected to be corrected by considering an effect of the plastic constraint.


Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Takahiro Sakimoto ◽  
Kenji Oi ◽  
Joe Kondo

This paper presents experimental and analytical results focusing on the strain limit of X80 linepipe. Ductile crack growth behavior from a girth weld notch is simulated by FE analysis based on a proposed damage model and is compared with the experimental results. The simulation model for ductile crack growth accompanied by penetration through the wall thickness consists of two criteria. One is a criterion for ductile crack initiation from the notch-tip, which is described by the plastic strain at the notch tip, because the onset of ductile cracking can be expressed by constant plastic strain independent of the shape and size of the components and the loading mode. The other is a damage-based criterion for simulating ductile crack extension associated with damage evolution influenced by plastic strain in accordance with the stress triaxiality ahead of the extending crack tip. The proposed simulation model is applicable to prediction of ductile crack growth behaviors from a circumferentially-notched girth welded pipe with high internal pressure, which is subjected to tensile loading or bending (post-buckling) deformation.


Sign in / Sign up

Export Citation Format

Share Document