Reactor pressure vessel integrity assessment by probabilistic fracture mechanics – A plant specific analysis

2014 ◽  
Vol 117-118 ◽  
pp. 64-69 ◽  
Author(s):  
Bo-Yi Chen ◽  
Chin-Cheng Huang ◽  
Hsoung-Wei Chou ◽  
Hsien-Chou Lin ◽  
Ru-Feng Liu ◽  
...  
Author(s):  
Silvia Turato ◽  
Vincent Venturini ◽  
Eric Meister ◽  
B. Richard Bass ◽  
Terry L. Dickson ◽  
...  

The structural integrity assessment of a nuclear Reactor Pressure Vessel (RPV) during accidental conditions, such as loss-of-coolant accident (LOCA), is a major safety concern. Besides Conventional deterministic calculations to justify the RPV integrity, Electricite´ de France (EDF) carries out probabilistic analyses. Since in the USA the probabilistic fracture mechanics analyses are accepted by the Nuclear Regulatory Commission (NRC), a benchmark has been realized between EDF and Oak Ridge Structural Assessments, Inc. (ORSA) to compare the models and the computational methodologies used in respective deterministic and probabilistic fracture mechanics analyses. Six cases involving two distinct transients imposed on RPVs containing specific flaw configurations (two axial subclad, two circumferential surface-breaking, and two axial surface-braking flaw configurations) were defined for a French vessel. In two separate phases, deterministic and probabilistic, fracture mechanics analyses were performed for these six cases.


Author(s):  
Milan Brumovsky

Integrity of reactor pressure vessels (RPV) are of the most importance for safety of the whole NPP. From all potential regimes, Pressurized Thermal Shock (PTS) regimes during emergency cooling conditions are the most severe and most important. Several nuclear codes are based in similar approaches but their procedures differ and are based on national knowledge and approach to fracture mechanics as well as non-destructive methods of reactor pressure vessel testing. The paper will compare requirements and procedures for PTS evaluation in accordance with RCC-M code in France [2], KTA in Germany [3], Russian original code PNAEG from 1989 [5] and new procedure from 2004 for WWER vessels [4], as well as VERLIFE procedure and IAEA-NULIFE VERLIFE [6] procedure for WWER RPVs and finally ASME Code requirements [1] including US NRC RG approach. Detailed comparison of individual parameters in calculations are compared — material properties, degradation of materials, calculated defects size and form, fracture mechanics approach, warm pre-stressing possibility etc.


Author(s):  
Milan Brumovsky

Integrity of reactor pressure vessels (RPV) are of the most importance for safety of the whole NPP. From all potential regimes, Pressurized Thermal Shock (PTS) regimes during emergency cooling conditions are the most severe and most important. Several nuclear codes are based in similar approaches but their procedures differ and are based on national knowledge and approach to fracture mechanics as well as non-destructive methods of reactor pressure vessel testing. The paper will compare requirements and procedures for PTS evaluation in accordance with RCC-M code in France [2], KTA in Germany [3], Russian original code PNAEG from 1989 [5] and new procedure from 2004 for WWER vessels [4], as well as VERLIFE procedure and IAEA-NULIFE VERLIFE [6] procedure for WWER RPVs and finally ASME Code requirements [1] including US NRC RG approach. Detailed comparison of individual parameters in calculations are compared — material properties, degradation of materials, calculated defects size and form, fracture mechanics approach, warm pre-stressing possibility etc.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


2020 ◽  
Vol 7 (3) ◽  
pp. 19-00573-19-00573
Author(s):  
Kai LU ◽  
Jinya KATSUYAMA ◽  
Yinsheng LI ◽  
Yuhei MIYAMOTO ◽  
Takatoshi HIROTA ◽  
...  

Author(s):  
Milan Brumovsky

Reactor pressure vessels are components that usually determine the lifetime of the whole nuclear power plant and thus also its efficiency and economy. There are several ways how to ensure conditions for reactor pressure vessel lifetime extension, mainly: - pre-operational, like: • optimal design of the vessel; • proper choice of vessel materials and manufacturing technology; - operational, like: • application of low-leakage core; • increase of water temperature in ECCS; • insertion of dummy elements; • vessel annealing; • decrease of conservatism during reactor pressure vessel integrity assessment e.g. using direct use of fracture mechanics parameters, like “Master Curve” approach. All these ways are discussed in the paper and some qualitative as well as quantitative evaluation is given.


Sign in / Sign up

Export Citation Format

Share Document