Comparison of PTS Guides for Reactor Pressure Vessel Integrity Assessment

Author(s):  
Milan Brumovsky

Integrity of reactor pressure vessels (RPV) are of the most importance for safety of the whole NPP. From all potential regimes, Pressurized Thermal Shock (PTS) regimes during emergency cooling conditions are the most severe and most important. Several nuclear codes are based in similar approaches but their procedures differ and are based on national knowledge and approach to fracture mechanics as well as non-destructive methods of reactor pressure vessel testing. The paper will compare requirements and procedures for PTS evaluation in accordance with RCC-M code in France [2], KTA in Germany [3], Russian original code PNAEG from 1989 [5] and new procedure from 2004 for WWER vessels [4], as well as VERLIFE procedure and IAEA-NULIFE VERLIFE [6] procedure for WWER RPVs and finally ASME Code requirements [1] including US NRC RG approach. Detailed comparison of individual parameters in calculations are compared — material properties, degradation of materials, calculated defects size and form, fracture mechanics approach, warm pre-stressing possibility etc.

Author(s):  
Milan Brumovsky

Integrity of reactor pressure vessels (RPV) are of the most importance for safety of the whole NPP. From all potential regimes, Pressurized Thermal Shock (PTS) regimes during emergency cooling conditions are the most severe and most important. Several nuclear codes are based in similar approaches but their procedures differ and are based on national knowledge and approach to fracture mechanics as well as non-destructive methods of reactor pressure vessel testing. The paper will compare requirements and procedures for PTS evaluation in accordance with RCC-M code in France [2], KTA in Germany [3], Russian original code PNAEG from 1989 [5] and new procedure from 2004 for WWER vessels [4], as well as VERLIFE procedure and IAEA-NULIFE VERLIFE [6] procedure for WWER RPVs and finally ASME Code requirements [1] including US NRC RG approach. Detailed comparison of individual parameters in calculations are compared — material properties, degradation of materials, calculated defects size and form, fracture mechanics approach, warm pre-stressing possibility etc.


Author(s):  
Milan Brumovsky

Reactor pressure vessels are components that usually determine the lifetime of the whole nuclear power plant and thus also its efficiency and economy. There are several ways how to ensure conditions for reactor pressure vessel lifetime extension, mainly: - pre-operational, like: • optimal design of the vessel; • proper choice of vessel materials and manufacturing technology; - operational, like: • application of low-leakage core; • increase of water temperature in ECCS; • insertion of dummy elements; • vessel annealing; • decrease of conservatism during reactor pressure vessel integrity assessment e.g. using direct use of fracture mechanics parameters, like “Master Curve” approach. All these ways are discussed in the paper and some qualitative as well as quantitative evaluation is given.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


Author(s):  
Silvia Turato ◽  
Vincent Venturini ◽  
Eric Meister ◽  
B. Richard Bass ◽  
Terry L. Dickson ◽  
...  

The structural integrity assessment of a nuclear Reactor Pressure Vessel (RPV) during accidental conditions, such as loss-of-coolant accident (LOCA), is a major safety concern. Besides Conventional deterministic calculations to justify the RPV integrity, Electricite´ de France (EDF) carries out probabilistic analyses. Since in the USA the probabilistic fracture mechanics analyses are accepted by the Nuclear Regulatory Commission (NRC), a benchmark has been realized between EDF and Oak Ridge Structural Assessments, Inc. (ORSA) to compare the models and the computational methodologies used in respective deterministic and probabilistic fracture mechanics analyses. Six cases involving two distinct transients imposed on RPVs containing specific flaw configurations (two axial subclad, two circumferential surface-breaking, and two axial surface-braking flaw configurations) were defined for a French vessel. In two separate phases, deterministic and probabilistic, fracture mechanics analyses were performed for these six cases.


Author(s):  
S. R. Gosselin ◽  
F. A. Simonen

Probabilistic fracture mechanics studies have addressed reactor pressure vessels that have high levels of material embrittlement. These calculations have used flaw size and density distributions determined from precise and optimized laboratory measurements made and validated with destructive methods as well as from physical models and expert elicitation. The experimental data were obtained from reactor vessel material samples removed from cancelled plants (Shoreham and the Pressure Vessel Research Users Facility (PVRUF)). Consequently, utilities may need to compare the numbers and sizes of reactor pressure vessel flaws identified by the plant’s inservice inspection program to the numbers and sizes of flaws assumed in prior failure probability calculations. This paper describes a method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in other analyses. The approach recognizes that ASME Code Section XI examinations suffer from limitations in terms of sizing errors for very small flaws. Direct comparisons of a vessel specific flaw distribution with other documented flaw distributions would lead to pessimistic conclusions. This paper provides a method for a valid comparison that accounts for flaw sizing errors present in ASME Code Section XI examinations.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Henriette Churier

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main considerations regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Brittle fracture risk associated with the embrittlement of RPV steel in irradiated areas is the main potential damage. In France, deterministic integrity assessment for RPV is based on the crack initiation stage. The stability of an under-clad postulated flaw in the core area is currently evaluated under a Pressurized Thermal Shock (PTS) through a fracture mechanics simplified method. One of the axes of EDF’s implemented strategy for NPP lifetime extension is the improvement of the deterministic approach with regards to the input data and methods so as to reduce conservatisms. In this context, 3D finite element elastic-plastic calculations with flaw modelling have been carried out recently in order to quantify the enhancement provided by a more realistic approach in the most severe events. The aim of this paper is to present both simplified and 3D modelling flaw stability evaluation methods and the results obtained by running a small break LOCA event.


Author(s):  
Emilie Dautreme ◽  
Emmanuel Remy ◽  
Roman Sueur ◽  
Jean-Philippe Fontes ◽  
Karine Aubert ◽  
...  

Nuclear Reactor Pressure Vessel (RPV) integrity is a major issue concerning plant safety and this component is one of the few within a Pressurized Water Reactor (PWR) whose replacement is not considered as feasible. To ensure that adequate margins against failure are maintained throughout the vessel service life, research engineers have developed and applied computational tools to study and assess the probability of pressure vessel failure during operating and postulated loads. The Materials Ageing Institute (MAI) sponsored a benchmark study to compare the results from software developed in France, Japan and the United States to compute the probability of flaw initiation in reactor pressure vessels. This benchmark study was performed to assess the similarities and differences in the software and to identify the sources of any differences that were found. Participants in this work included researchers from EDF in France, CRIEPI in Japan and EPRI in the United States, with each organization using the probabilistic software tool that had been developed in their country. An incremental approach, beginning with deterministic comparisons and ending by assessing Conditional Probability of crack Initiation (CPI), provided confirmation of the good agreement between the results obtained from the software used in this benchmark study. This conclusion strengthens the confidence in these probabilistic fracture mechanics tools and improves understanding of the fundamental computational procedures and algorithms.


Author(s):  
Udo Rindelhardt ◽  
Hans-Werner Viehrig ◽  
Joerg Konheiser ◽  
Jan Schuhknecht

Between 1973 and 1990 four units of the Russian nuclear power plants type WWER-440/230 were operated in Greifswald (former East Germany). Material probes from the pressure vessels were gained in the frame of the ongoing decommissioning procedure. The investigations of this material started with material from the circumferential core weld of unit 1. First, this paper presents results of the reactor pressure vessel (RPV) fluence calculations depending on different loading schemes and on the axial weld position based on the Monte Carlo code TRAMO. The results show that the use of the dummy assemblies reduces the flux by a factor of 2–5 depending on the azimuthal position. The circumferential core weld (SN0.1.4) received a fluence of 2.4×1019 neutrons/cm2 at the inner surface; it decreases to 0.8×1019 neutrons/cm2 at the outer surface. The material investigations were done using a trepan from the circumferential core weld. The reference temperature T0 was calculated with the measured fracture toughness values, KJc, at brittle failure of the specimen. The KJc values show a remarkable scatter. The highest T0 was about 50°C at a distance of 22 mm from the inner surface of the weld. The Charpy transition temperature TT41J estimated with results of subsized specimens after the recovery annealing was confirmed by the testing of standard Charpy V-notch specimens. The VERLIFE procedure prepared for the integrity assessment of WWER RPV was applied on the measured results. The VERLIFE lower bound curve indexed with the Structural Integrity Assessment Procedures for European Industry (SINTAP) reference temperature, RTT0SINTAP, envelops the KJc values. Therefore for a conservative integrity assessment the fracture toughness curve indexed with a RT representing the brittle fraction of a data set of measured KJc values has to be applied.


Sign in / Sign up

Export Citation Format

Share Document