Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression

2010 ◽  
Vol 33 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Maria Puig-Arnavat ◽  
Jesús López-Villada ◽  
Joan Carles Bruno ◽  
Alberto Coronas
2001 ◽  
Author(s):  
E. D. Rogdakis ◽  
V. D. Papaefthimiou

Abstract It is a general trend today, the old centrifugal machines to be replaced by new absorption machines. The mass flow rate of the cooling water in the centrifugal machines is normally 30% less than that in the two-stage absorption chiller for the same refrigerating capacity. Some absorption chillers manufacturers have updated and improved the double-effect technology increasing the cooling water temperature difference from the typical value of 5.5°C to 7.4°C and reducing the cooling water flow rate by about 30%. Using such a modern double effect absorption unit to replace a centrifugal chiller the same cooling water circuit can be used and the total cost of the retrofit is minimized. In this case a new flow pattern of the cooling tower is developed, and in this paper the design of a new tower fill is predicted taking into account the new factors characterizing the operating conditions and the required performance of the tower. As an example, the operational curves of a modified cooling tower (1500 KW cooling power) used by a 240 RT double-effect absorption chiller are presented.


Author(s):  
Daniele Ludovisi ◽  
William M. Worek ◽  
Milton Meckler

Multi-effect LiBr absorption chiller must take advantage of higher temperature heat sources to achieve higher COP so as to be competitive with lower first cost comparable commercially available, efficient electric chillers under current market pricing conditions. Yet a nominal conventional double-effect absorption chiller operating at a COP of 1.0 versus a comparable efficient motor driven centrifugal chiller operating at a COP of 7.0 will consume slightly less than twice the amount of prime natural gas (NG) source energy assuming a local 28% NG fired electric utility plant’s annual average efficiency and a 10% gas distribution leakage and 10% electric transmission loss to user’s meter. However if the COP of the above referenced double-effect LiBr absorption chiller were doubled, it would consume approximately the same amount of prime NG source energy and equally sustainable from an environmental impact standpoint. Consequently research to further improve double-effect LiBr absorption chillers beyond the VRA benefits reported to date was investigated in this study. Former simulation studies of a low differential pressure-vapor recompression absorber (VRA) reported in 2001 indicated a 7% COP efficiency gain, while additional simulation studies reported in 2006 indicated a 38% COP efficiency gain with the VRA operating at elevated differential pressures at the same upper stage concentrator temperature previously considered. Double-effect LiBr absorption chillers are limited by corrosion effects, which have been shown to accelerate significantly above 160 °C. In this paper, a reverse series flow, double-effect LiBr absorption chiller employing a VRA is investigated over a wider range of upper stage concentrator and absorber cooling temperatures but operating at the same low and elevated pressure differential levels reported earlier showed significant improvement in COP efficiency, capacity performance and projected hybrid operational cost.


Solar Energy ◽  
2003 ◽  
Author(s):  
James Bergquam ◽  
Joseph Brezner ◽  
Andrew Jensen

This paper presents results from a project sponsored by the California Energy Commission that involved the design and testing of an augmented generator for a solar fired, double effect absorption chiller. Solar powered absorption chillers use water heated by an array of solar collectors to boil a solution of lithium bromide and water. The energy transfer process between pressurized water heated by the solar collectors and the LiBr/H2O solution is the focus of this study. A method of augmenting the heat transfer in the generator was developed, bench tested and implemented in an operating 70kW solar HVAC system. The augmented design involved installing twisted stainless steel inserts in the tubes where the LiBr/H2O solution boils and refrigerant vapor is generated. The inserts increased the overall heat transfer coefficient between the heat medium in the shell side of the generator and the LiBr/H2O solution in the tubes. A solar-fired, double effect absorption chiller requires the collector array and storage tank to operate at temperatures in excess of 150°C. At these temperatures, the heating water must be at a pressure of about 700kPa to prevent it from boiling. This combination of high temperature and high pressure requires that the collectors, storage tanks, pumps, valves and piping be designed according to pressure vessel codes. This increases the initial cost of the system and also requires significant maintenance. The main objective of this work is to develop a method of lowering the requirements for a 150°C heating medium. The ultimate goal is to operate at about 120°C while maintaining the Coefficient of Performance and cooling capacity of the absorption chiller. The results presented in this paper show that the generator with twisted inserts can operate with an average log mean temperature difference of 10°C. The average COP of the chiller is about 1.0 and the chiller provided all of the cooling required by a 743 m2 building. Without the twisted inserts, the generator operated with a temperature difference of 22 to 28°C. The inserts provide significant reduction in the operating temperature of the solar collectors and do not adversely affect the performance of the double effect absorption chiller.


Author(s):  
Stephen White ◽  
Subbu Sethuvenkatraman ◽  
Mark Peristy ◽  
Sergio Pintaldi ◽  
Mark Goldsworthy ◽  
...  

2014 ◽  
Vol 13 ◽  
pp. 02023
Author(s):  
Mojahid Sid Ahmed Mohammed Salih Ahmed ◽  
Syed Ihtsham Ul-Haq Gilani

Sign in / Sign up

Export Citation Format

Share Document