refrigeration capacity
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 2160 (1) ◽  
pp. 012032
Author(s):  
Hongxuan Li ◽  
Tonghua Zou ◽  
Qingling Hui ◽  
Ting Li ◽  
Walter Mittelbach

Abstract In recent years, adsorption refrigeration technology has attracted wide attention from experts and scholars at home and abroad due to its environmental friendliness and energy saving advantages. In order to study the effectiveness of adsorption refrigeration technology to recover low-grade energy, a silica gel-water adsorption refrigeration system was proposed, which can effectively utilize low-grade energy such as industrial waste heat. The structure and composition of the system are introduced. The operation performance of the unit is tested under different working conditions by orthogonal experimental method, and the experimental results are analyzed. The effects of hot water temperature and flow, chilled water temperature and flow on the refrigeration capacity and COP value of the system are obtained. The experimental results show that under the low-temperature heat source of 55-75°C, the cooling capacity of the system can reach 5.3-12 and the COP value can reach 0.36-0.56. Under the same hot water temperature difference, the cooling capacity and COP value of the system increase rapidly under the condition of changing the hot water temperature at low temperature, indicating that increasing the heat source temperature at low temperature has a greater impact on the system performance. Through the analysis of primary and secondary effects, it is concluded that the inlet temperature of hot water is the main factor affecting the refrigeration capacity and COP value of the system.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 248
Author(s):  
Victoria Kornienko ◽  
Roman Radchenko ◽  
Mykola Radchenko ◽  
Andrii Radchenko ◽  
Anatoliy Pavlenko ◽  
...  

The fuel efficiency of marine diesel engine as any combustion engine falls with raising the temperature of air at the suction of its turbocharger. Therefore, cooling the engine turbocharger intake air by recovering exhaust gas heat to refrigeration capacity is a very perspective trend in enhancing the fuel efficiency of marine diesel engines. The application of water-fuel emulsion (WFE) combustion enables the reduction of a low-temperature corrosion, and, as a result, provides deeper exhaust gas heat utilization in the exhaust gas boiler (EGB) to the much lower temperature of 90–110 °C during WFE instead of 150–170 °C when combusting conventional fuel oil. This leads to the increment of the heat extracted from exhaust gas that is converted to refrigeration capacity by exhaust heat recovery chiller for cooling engine turbocharger sucked air accordingly. We experimentally investigated the corrosion processes on the condensation surfaces of EGB during WFE combustion to approve their intensity suppression and the possibility of deeper exhaust gas heat utilization. The fuel efficiency of cooling intake air at the suction of engine turbocharger with WFE combustion by exhaust heat recovery chiller was estimated along the voyage line Mariupol–Amsterdam–Mariupol. The values of available refrigeration capacity of exhaust heat recovery chiller, engine turbocharger sacked air temperature drop, and corresponding reduction in specific fuel consumption of the main low-speed diesel engine at varying actual climatic conditions on the voyage line were evaluated.


Author(s):  
Mykola Radchenko ◽  
Andrii Radchenko ◽  
Roman Radchenko ◽  
Serhiy Kantor ◽  
Dmytro Konovalov ◽  
...  

An increase in gas turbine efficiency is possible by inlet air cooling in chillers converting a heat of exhaust gas into refrigeration. In traditional absorption lithium-bromide chillers of a simple cycle an inlet air can be cooled to 15°С. More decrease of turbine inlet air temperature and greater fuel saving accordingly is possible in refrigerant ejector chiller as a simple in design and cheap. The innovative turbine inlet air cooling (TIC) system with absorption chiller as a high-temperature and ejector chiller as a low-temperature stages for cooling air to 7 or 10 °C is proposed. Its application in temperate climate provides annual fuel saving by 1.5 to 2 times higher compared with traditional air cooling in absorption chiller to 15 °C. A novel universal method of analysing the efficiency of TIC system operation and rational designing has been developed. The method involves the simple numerical simulation based on real input data of site actual climatic conditions. The annual fuel saving is chosen as a primary criterion. The novelty of the methodological approach consists in replacing the current yearly changeable fuel reduction due to TIC by its hour-by-hour summation as an annual fuel saving. The increment of annual fuel saving referred to needed refrigeration capacity of TIC system is used as an indicator to select a design refrigeration capacity. A rational design refrigeration capacity determined by applying the novel methodology allows to decrease the TIC system sizes by 10 to 20% compared with traditional designing issuing from the peaked thermal load during a year. So far as it was developed analytically by introducing quite reasonable criterion indicator and based on the simple summation procedure the method is quite applicable for designing in power and energy.


Author(s):  
Shaleni Venkatesan ◽  
Meher Abhinav E ◽  
Kavita S ◽  
Pavan Kumar N ◽  
Manivel raja M ◽  
...  

2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.


2021 ◽  
Vol 864 ◽  
pp. 158757
Author(s):  
Jinyang Li ◽  
Yanfeng Liu ◽  
Xiang Lu ◽  
Yifei Zhang ◽  
Jianping Guo ◽  
...  

2021 ◽  
Vol 323 ◽  
pp. 00031
Author(s):  
Roman Radchenko ◽  
Victoria Kornienko ◽  
Mykola Radchenko ◽  
Dariusz Mikielewicz ◽  
Artem Andreev ◽  
...  

The fuel efficiency of cooling air at the inlet of marine low speed diesel engine with water-fuel emulsion combustion by ejector chiller utilizing the heat of exhaust gas along the route line Mariupol– Amsterdam–Mariupol was estimated. The values of available refrigeration capacity of ejector chiller, engine intake air temperature drop and corresponding decrease in specific fuel consumption of the main diesel engine at varying climatic conditions along the route line were evaluated. Their values for water-fuel emulsion were compared with conventional fuel oil combustion.


Sign in / Sign up

Export Citation Format

Share Document