Hard Rock Fragmentation in Percussion Drilling Considering Confining Pressure: Insights from an Experimental Study

Author(s):  
Yanliang Li ◽  
Jianming Peng ◽  
Pengyu Zhang ◽  
Chaoyang Huang
2020 ◽  
Vol 14 (1) ◽  
pp. 298-308
Author(s):  
Bhatawdekar Ramesh Murlidhar ◽  
Danial Jahed Armaghani ◽  
Edy Tonnizam Mohamad

Background: Blasting is commonly used for loosening hard rock during excavation for generating the desired rock fragmentation required for optimizing the productivity of downstream operations. The environmental impacts resulting from such blasting operations include the generation of flyrock, ground vibrations, air over pressure (AOp) and rock fragmentation. Objective: The purpose of this research is to evaluate the suitability of different computational techniques for the prediction of these environmental effects and to determine the key factors which contribute to each of these effects. This paper also identifies future research needs for the prediction of the environmental effects of blasting operations in hard rock. Methods: The various computational techniques utilized by the researchers in predicting blasting environmental issues such as artificial neural network (ANN), fuzzy interface system (FIS), imperialist competitive algorithm (ICA), and particle swarm optimization (PSO), were reviewed. Results: The results indicated that ANN, FIS and ANN-ICA were the best models for prediction of flyrock distance. FIS model was the best technique for the prediction of AOp and ground vibration. On the other hand, ANN was found to be the best for the assessment of fragmentation. Conclusion and Recommendation: It can be concluded that FIS, ANN-PSO, ANN-ICA models perform better than ANN models for the prediction of environmental issues of blasting using the same database. This paper further discusses how some of these techniques can be implemented by mining engineers and blasting team members at operating mines for predicting blast performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
S. F. Zhai ◽  
S. H. Cao ◽  
M. Gao ◽  
Y. Feng

In this paper, General Particle Dynamics (GPD3D) is developed to simulate rock fragmentation by TBM disc cutters under different confining stress. The processes of rock fragmentation without confining pressure by one disc cutter and two disc cutters are investigated using GPD3D. The crushed zone, initiation and propagation of cracks, and the chipping of rocks obtained from the proposed method are in good agreement with those obtained from the previous experimental and numerical results. The effects of different confining pressure on rock fragmentation are investigated using GPD3D. It is found that the crack initiation forces significantly increase as the confining stress increases, while the maximum angle of cracks decreases as the confining stress increases. The numerical results obtained from the proposed method agree well with those in previous indentation tests. Moreover, the effects of equivalent confining stress on rock fragmentation are studied using GPD3D, and it is found that rock fragmentation becomes easier when the equivalent confining stress is equal to 15MPa.


Author(s):  
M. Hamelin ◽  
F. Kitzinger ◽  
S. Pronko ◽  
G. Schofield

2014 ◽  
Vol 63 ◽  
pp. 5654-5663 ◽  
Author(s):  
ZENG Zhijiao ◽  
LI Xiaochun ◽  
SHI Lu ◽  
BAI Bing ◽  
FANG Zhiming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document