scholarly journals The Effects of Confining Stress on Rock Fragmentation by TBM Disc Cutters

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
S. F. Zhai ◽  
S. H. Cao ◽  
M. Gao ◽  
Y. Feng

In this paper, General Particle Dynamics (GPD3D) is developed to simulate rock fragmentation by TBM disc cutters under different confining stress. The processes of rock fragmentation without confining pressure by one disc cutter and two disc cutters are investigated using GPD3D. The crushed zone, initiation and propagation of cracks, and the chipping of rocks obtained from the proposed method are in good agreement with those obtained from the previous experimental and numerical results. The effects of different confining pressure on rock fragmentation are investigated using GPD3D. It is found that the crack initiation forces significantly increase as the confining stress increases, while the maximum angle of cracks decreases as the confining stress increases. The numerical results obtained from the proposed method agree well with those in previous indentation tests. Moreover, the effects of equivalent confining stress on rock fragmentation are studied using GPD3D, and it is found that rock fragmentation becomes easier when the equivalent confining stress is equal to 15MPa.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gaofeng Wang ◽  
Ting Ren ◽  
Gaolei Zhu

Hard rock Tunnel Boring Machines (TBMs) engaging disc cutters as cutting tools have been employed in considerable underground coal mines to accommodate the requirement of more stone drivage as operations are going deeper. This study conducted a set of disc cutter indentation tests to explore the influence of confining stresses on rock fragmentation, thrust force, and penetration energy on sandstone, which is commonly encountered in underground coal mines. The test results show that there exists a critical confining stress, under which the maximum thrust force and penetration energy keep increasing with confining stress mounting while the maximum thrust force and penetration energy will decrease or flatten if it is surpassed. By combining with previous studies and comparing the critical confining stress values to the rock mechanical properties’ values, the critical value is most likely to be of cohesion. For subsurface rock fragmentation, the Constant Cross Section (CCS) disc cutter indentation has denser cracks and their orientations are more lateral than those under the V shape one; the V shape disc cutter indentation is less sensitive to confining stresses, with no notable increase of crack number and crack reorientation with increasing confinement. Thus, the CCS disc cutter is more favorable than the V shape one from the perspective of rock fragmentation under confining stresses.


2011 ◽  
Vol 105-107 ◽  
pp. 1170-1174
Author(s):  
Hui Yun Li ◽  
Guang Yu Shi

This paper gives a brief explanation of the failure mechanism of rock fragmentation in rock cutting. The JOHNSON_HOLMGIST_CONCRETE is selected as the rock material model in numerical simulation with confining pressure and damage influence introduced. We use the non-linear dynamic finite element software LS/DYNA to simulate the dynamic process of cutting rock. The cutting forces acting on disc cutter are computed. The relationship between cutting forces and penetration depth, confining pressure and damage parameters are obtained. The results show that, the cutting forces increase with the penetration depth. They are larger in equal confining pressure than unequal condition. The forces are amplified with the damage parameters increasing. The conclusion provides a reference for the prediction of the cutting forces.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Qinglong Zhang ◽  
Yanwen Zhu ◽  
Canxun Du ◽  
Sanlin Du ◽  
Kun Shao ◽  
...  

Rock-breaking efficiency of full-face rock tunnel boring machine (TBM) is closely related to the performance of the disc cutter and the characteristics of the rock mass. In the point of view of mesomechanics, the particle flow code (PFC) is used to establish a numerical model of the rock mass and the disc cutter, and the process of TBM disc cutter intrusion into the rock mass is analyzed. The dynamic response mechanism and crack evolution process of the rock mass under the action of the disc cutter are studied on the basis of micromechanics, and the relationship between the rock mass crack, penetration, and cutting force during the intrusion of the disc cutter is revealed. The sensitivity analysis is carried out on the confining pressure conditions and the influence parameters of the disc cutter spacing. The results show that the rock breaking by disc cutter undergoes the transformation characteristics of compaction, shearing, and tension failure modes, and the failure process of the rock mass is the joint action of tension and shear. In the whole process of rock breaking, the disc cutter has the phenomenon of repeated loading-unloading alternation and leaping rock breaking; after the penetration of the disc cutter reached 9.0 mm, penetration creaks begin to appear on the surface of the rock mass; the penetration was obviously reduced with the increase of confining pressure, and it is mainly the penetration cracks on the surface; after the disc cutter spacing reaches 100.0 mm, there is no penetration crack between the two disc cutters. The research conclusion can provide a reference for the disc cutter optimization design.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Qi Liu ◽  
Yucong Pan ◽  
Penghai Deng

To better understand the rock fragmentation mechanism and optimize cutter design and selection for rock excavation by TBM, a set of three-dimensional indentation tests was conducted with different rock and cutter types. Acoustic emission (AE) monitoring technique was employed to capture the information of the rock damage evolution real-timely. It is found that the penetration by using the constant cross section (CCS) cutter tends to induce inconspicuous rock chips formation before the sudden occurrence of the macrocrack, but that by using the V-type cutter tends to induce gradual rock fragmentation accompanied by the multiple local rock chips formation and the sawtooth force-penetration curve. Meanwhile, rock fragmentation models for CCS and V-type cutters were compared, and the spatio-temporal evolution of AE events was quantitatively analyzed to reflect the rock damage zone development process. Results indicate that the V-type cutter has greater penetration ability and the CCS cutter can cause larger unit damage zone radius. Microscopic observation by using the scanning electron microscope (SEM) reveals that the fracture mechanism for the crushed zone of rock is mainly shear type and that for the major crack is tensile type. It does not matter with rock types or cutter types.


2012 ◽  
Vol 594-597 ◽  
pp. 3-7
Author(s):  
Yan Wang ◽  
Zheng Zhao Liang

Based on the mesoscopic damage theory and the finite element method, a numerical code RFPA was applied to investigate the rock fragmentation by three TBM cutters loaded one after another in different time interval. The whole process of crack initiation and propagation was successfully simulated by the cutters loaded with different step intervals. The time interval of the disc cutters has significant influence on the fracture patterns and the rock breaking efficiency. The simulated results show that there are three types of breakage mode of the rock subjected to compression by the cutters.


2014 ◽  
Vol 664 ◽  
pp. 143-147
Author(s):  
Yan Li ◽  
Ke Zhang ◽  
Jian Sun ◽  
Hong Sun ◽  
Zi Nan Wang

Objective: To study the influence of disc cutter spacing on rock fragmentation efficiency and optimize cutter layout and improve the efficiency of disc cutter. Method: ANSYS, a finite element software was used to simulate double disc cutter cutting process. Result: Find a good corresponding relationship between penetration and cutter spacing. At the process of sandstone, if disc cutter spacing as 54 ~ 55 mm, rock crushing as the largest and rock fragmentation efficiency is the highest; with the penetration of 10 mm. If disc cutter spacing as 66~68.5mm, rock crushing as the largest and rock fragmentation efficiency is the highest with the penetration of 15 mm. Changing the cutter spacing and penetration, rock stress and broken degree will also change. Conclusion: Double disc cutters change within the range of best cutter spacing, cutter spacing is proportional to the rock crushing. If the cutter distance is greater than the best cutter spacing, the ledge will be appeared. For one type of rocks, the penetration would have some effects on the optimal cutter spacing. If the penetration increases, the optimal cutter spacing increases gradually, at the time of other construction parameters unchanged.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 283-292
Author(s):  
Tomasz Topór ◽  

The application of machine learning algorithms in petroleum geology has opened a new chapter in oil and gas exploration. Machine learning algorithms have been successfully used to predict crucial petrophysical properties when characterizing reservoirs. This study utilizes the concept of machine learning to predict permeability under confining stress conditions for samples from tight sandstone formations. The models were constructed using two machine learning algorithms of varying complexity (multiple linear regression [MLR] and random forests [RF]) and trained on a dataset that combined basic well information, basic petrophysical data, and rock type from a visual inspection of the core material. The RF algorithm underwent feature engineering to increase the number of predictors in the models. In order to check the training models’ robustness, 10-fold cross-validation was performed. The MLR and RF applications demonstrated that both algorithms can accurately predict permeability under constant confining pressure (R2 0.800 vs. 0.834). The RF accuracy was about 3% better than that of the MLR and about 6% better than the linear reference regression (LR) that utilized only porosity. Porosity was the most influential feature of the models’ performance. In the case of RF, the depth was also significant in the permeability predictions, which could be evidence of hidden interactions between the variables of porosity and depth. The local interpretation revealed the common features among outliers. Both the training and testing sets had moderate-low porosity (3–10%) and a lack of fractures. In the test set, calcite or quartz cementation also led to poor permeability predictions. The workflow that utilizes the tidymodels concept will be further applied in more complex examples to predict spatial petrophysical features from seismic attributes using various machine learning algorithms.


2020 ◽  
Vol 28 (2) ◽  
pp. 1-7
Author(s):  
Rouhollah Basirat ◽  
Jafar Khademi Hamidi

AbstractUnderstanding the brittleness of rock has a crucial importance in rock engineering applications such as the mechanical excavation of rock. In this study, numerical modeling of a punch penetration test is performed using the Discrete Element Method (DEM). The Peak Strength Index (PSI) as a function of the brittleness index was calculated using the axial load and a penetration graph obtained from numerical models. In the first step, the numerical model was verified by experimental results. The results obtained from the numerical modeling showed a good agreement with those obtained from the experimental tests. The propagation path was also simulated using Voronoi meshing. The fracture was created under the indenter in the first step, and then radial fractures were propagated. The effects of confining pressure and strength parameters on the PSI were subsequently investigated. The numerical results showed that the PSI increases with enhancing the confining pressure and the strength parameter of the rock, including cohesion and the friction angle. A new relationship between the strength parameters and PSI was also introduced based on two variable regressions of the numerical results.


Sign in / Sign up

Export Citation Format

Share Document