scholarly journals Dosimetric Evaluation of Internal Biological Target Volume (IBTV) in Radiotherapy Planning for Non-Small Cell Lung Cancer

Author(s):  
Y. Zhang ◽  
J. Duan ◽  
J. Li
Oncotarget ◽  
2017 ◽  
Vol 8 (45) ◽  
pp. 79629-79635
Author(s):  
Yingjie Zhang ◽  
Jianbin Li ◽  
Yili Duan ◽  
Wei Wang ◽  
Fengxiang Li ◽  
...  

2019 ◽  
Vol 196 (2) ◽  
pp. 151-158
Author(s):  
Faegheh S. Mounessi ◽  
Jörg Eckardt ◽  
Arne Holstein ◽  
Santiago Ewig ◽  
Stefan Könemann

2020 ◽  
Vol 19 ◽  
pp. 153303382094748
Author(s):  
Fuli Zhang ◽  
Qiusheng Wang ◽  
Haipeng Li

Radiotherapy plays an important role in the treatment of non-small cell lung cancer. Accurate segmentation of the gross target volume is very important for successful radiotherapy delivery. Deep learning techniques can obtain fast and accurate segmentation, which is independent of experts’ experience and saves time compared with manual delineation. In this paper, we introduce a modified version of ResNet and apply it to segment the gross target volume in computed tomography images of patients with non-small cell lung cancer. Normalization was applied to reduce the differences among images and data augmentation techniques were employed to further enrich the data of the training set. Two different residual convolutional blocks were used to efficiently extract the deep features of the computed tomography images, and the features from all levels of the ResNet were merged into a single output. This simple design achieved a fusion of deep semantic features and shallow appearance features to generate dense pixel outputs. The test loss tended to be stable after 50 training epochs, and the segmentation took 21 ms per computed tomography image. The average evaluation metrics were: Dice similarity coefficient, 0.73; Jaccard similarity coefficient, 0.68; true positive rate, 0.71; and false positive rate, 0.0012. Those results were better than those of U-Net, which was used as a benchmark. The modified ResNet directly extracted multi-scale context features from original input images. Thus, the proposed automatic segmentation method can quickly segment the gross target volume in non-small cell lung cancer cases and be applied to improve consistency in contouring.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xue Bai ◽  
Guoping Shan ◽  
Ming Chen ◽  
Binbing Wang

Abstract Background Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) are standard physical technologies of stereotactic body radiotherapy (SBRT) that are used for patients with non-small-cell lung cancer (NSCLC). The treatment plan quality depends on the experience of the planner and is limited by planning time. An automated planning process can save time and ensure a high-quality plan. This study aimed to introduce and demonstrate an automated planning procedure for SBRT for patients with NSCLC based on machine-learning algorithms. The automated planning was conducted in two steps: (1) determining patient-specific optimized beam orientations; (2) calculating the organs at risk (OAR) dose achievable for a given patient and setting these dosimetric parameters as optimization objectives. A model was developed using data of historical expertise plans based on support vector regression. The study cohort comprised patients with NSCLC who were treated using SBRT. A training cohort (N = 125) was used to calculate the beam orientations and dosimetric parameters for the lung as functions of the geometrical feature of each case. These plan–geometry relationships were used in a validation cohort (N = 30) to automatically establish the SBRT plan. The automatically generated plans were compared with clinical plans established by an experienced planner. Results All 30 automated plans (100%) fulfilled the dose criteria for OARs and planning target volume (PTV) coverage, and were deemed acceptable according to evaluation by experienced radiation oncologists. An automated plan increased the mean maximum dose for ribs (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). The minimum, maximum, and mean dose; homogeneity index; conformation index to PTV; doses to other organs; and the total monitor units showed no significant differences between manual plans established by experts and automated plans (P > 0.05). The hands-on planning time was reduced from 40–60 min to 10–15 min. Conclusion An automated planning method using machine learning was proposed for NSCLC SBRT. Validation results showed that the proposed method decreased planning time without compromising plan quality. Plans generated by this method were acceptable for clinical use.


Sign in / Sign up

Export Citation Format

Share Document