Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models

2005 ◽  
Vol 42 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Li-Qun Chen ◽  
Xiao-Dong Yang
2011 ◽  
Vol 18 (1-2) ◽  
pp. 281-287 ◽  
Author(s):  
Hu Ding ◽  
Li-Qun Chen

Nonlinear models of transverse vibration of axially moving viscoelastic beams subjected external transverse loads via steady-state periodical response are numerically investigated. An integro-partial-differential equation and a partial-differential equation of transverse motion can be derived respectively from a model of the coupled planar vibration for an axially moving beam. The finite difference scheme is developed to calculate steady-state response for the model of coupled planar and the two models of transverse motion under the simple support boundary. Numerical results indicate that the amplitude of the steady-state response for the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters and the integro-partial-differential equation gives results more closely to the coupled planar vibration.


Author(s):  
George Valsamos ◽  
Christos Theodosiou ◽  
Sotirios Natsiavas

Dynamic response related to fatigue prediction of an urban bus is investigated. First, a quite complete model subjected to road excitation is employed in order to extract sufficiently reliable and accurate information in a fast way. The bus model is set up by applying the finite element method, resulting to an excessive number of degrees of freedom. In addition, the bus suspension units involve nonlinear characterstics. A step towards alleviating this difficulty is the application of an appropriate coordinate transformation, causing a drastic reduction in the dimension of the final set of the equations of motion. This allows the application of a systematic numerical methodology leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. Next, typical results were obtained for excitation resulting from selected urban road profiles. These profiles have either a known form or known statistical properties, expressed by an appropriate spatial power spectral density function. In all cases examined, the emphasis was put on investigating ride response. The main attention was focused on identifying areas of the bus suspension and frame subsystems where high stress levels are developed. This information is based on the idea of a nonlinear transfer function and provides the basis for applying suitable criteria in order to perform analyses leading to prediction of fatigue failure.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Hu Ding

Steady-state periodical response is investigated for planar vibration of axially moving viscoelastic beams subjected external transverse loads. A model of the coupled planar vibration is established by introducing a coordinate transform. The model can reduce to two nonlinear models of transverse vibration. The finite difference scheme is developed to calculate steady-state response numerically. Numerical results demonstrate there are steady-state periodic responses in transverse vibration, and resonance occurs if the external load frequency approaches the linear natural frequencies. The effect of material parameters and excitation parameters on the amplitude of the steady-state responses are examined. Numerical results also indicate that the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters, and the two models of transverse vibration yield satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document