scholarly journals Failure characterization of solid structures based on an equivalence of cohesive zone model

2019 ◽  
Vol 163 ◽  
pp. 194-210 ◽  
Author(s):  
Hao Long ◽  
Lihong Liang ◽  
Yueguang Wei
2015 ◽  
Vol 88 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-Rak Kim ◽  
Felipe A.C. de Freitas ◽  
Jong Suk Jung ◽  
Youngjong Sim

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1435 ◽  
Author(s):  
S. S. R. Koloor ◽  
S. M. Rahimian-Koloor ◽  
A. Karimzadeh ◽  
M. Hamdi ◽  
Michal Petrů ◽  
...  

The mechanical behavior of graphene/polymer interfaces in the graphene-reinforced epoxy nanocomposite is one of the factors that dictates the deformation and damage response of the nanocomposites. In this study, hybrid molecular dynamic (MD) and finite element (FE) simulations of a graphene/polymer nanocomposite are developed to characterize the elastic-damage behavior of graphene/polymer interfaces under a tensile separation condition. The MD results show that the graphene/epoxy interface behaves in the form of elastic-softening exponential regressive law. The FE results verify the adequacy of the cohesive zone model in accurate prediction of the interface damage behavior. The graphene/epoxy cohesive interface is characterized by normal stiffness, tensile strength, and fracture energy of 5 × 10−8 (aPa·nm−1), 9.75 × 10−10 (nm), 2.1 × 10−10 (N·nm−1) respectively, that is followed by an exponential regressive law with the exponent, α = 7.74. It is shown that the commonly assumed bilinear softening law of the cohesive interface could lead up to 55% error in the predicted separation of the interface.


2018 ◽  
Vol 193 ◽  
pp. 64-71 ◽  
Author(s):  
Etienne Malachanne ◽  
Mouad Jebli ◽  
Frederic Jamin ◽  
Eric Garcia-Diaz ◽  
Moulay-Said El Youssoufi

2020 ◽  
Vol 10 (19) ◽  
pp. 6640
Author(s):  
Zhonghua Shi ◽  
Zhenhang Kang ◽  
Qiang Xie ◽  
Yuan Tian ◽  
Yueqing Zhao ◽  
...  

An effective deicing system is needed to be designed to conveniently remove ice from the surfaces of structures. In this paper, an ultrasonic deicing system for different configurations was estimated and verified based on finite element simulations. The research focused on deicing efficiency factor (DEF) discussions, prediction, and validations. Firstly, seven different configurations of Lead zirconate titanate (PZT) disk actuators with the same volume but different radius and thickness were adopted to conduct harmonic analysis. The effects of PZT shape on shear stresses and optimal frequencies were obtained. Simultaneously, the average shear stresses at the ice/substrate interface and total energy density needed for deicing were calculated. Then, a coefficient named deicing efficiency factor (DEF) was proposed to estimate deicing efficiency. Based on these results, the optimized configuration and deicing frequency are given. Furthermore, four different icing cases for the optimize configuration were studied to further verify the rationality of DEF. The effects of shear stress distributions on deicing efficiency were also analyzed. At same time, a cohesive zone model (CZM) was introduced to describe interface behavior of the plate and ice layer. Standard-explicit co-simulation was utilized to model the wave propagation and ice layer delamination process. Finally, the deicing experiments were carried out to validate the feasibility and correctness of the deicing system.


2021 ◽  
Vol 11 (1) ◽  
pp. 456
Author(s):  
Yanglong Zhong ◽  
Liang Gao ◽  
Xiaopei Cai ◽  
Bolun An ◽  
Zhihan Zhang ◽  
...  

The interface crack of a slab track is a fracture of mixed-mode that experiences a complex loading–unloading–reloading process. A reasonable simulation of the interaction between the layers of slab tracks is the key to studying the interface crack. However, the existing models of interface disease of slab track have problems, such as the stress oscillation of the crack tip and self-repairing, which do not simulate the mixed mode of interface cracks accurately. Aiming at these shortcomings, we propose an improved cohesive zone model combined with an unloading/reloading relationship based on the original Park–Paulino–Roesler (PPR) model in this paper. It is shown that the improved model guaranteed the consistency of the cohesive constitutive model and described the mixed-mode fracture better. This conclusion is based on the assessment of work-of-separation and the simulation of the mixed-mode bending test. Through the test of loading, unloading, and reloading, we observed that the improved unloading/reloading relationship effectively eliminated the issue of self-repairing and preserved all essential features. The proposed model provides a tool for the study of interface cracking mechanism of ballastless tracks and theoretical guidance for the monitoring, maintenance, and repair of layer defects, such as interfacial cracks and slab arches.


Sign in / Sign up

Export Citation Format

Share Document