Relationships between the material parameters of continuum-kinematics-inspired peridynamics and isotropic linear elasticity for two-dimensional problems

Author(s):  
E. Ekiz ◽  
P. Steinmann ◽  
A. Javili
1994 ◽  
Vol 61 (2) ◽  
pp. 264-269 ◽  
Author(s):  
A. Nagarajan ◽  
E. Lutz ◽  
S. Mukherjee

This paper presents a novel application of the boundary element method to solve problems in linear elasticity. The new method is called the Boundary Contour Method. This approach requires no numerical integration at all for two-dimensional problems and numerical evaluation of line integrals only for three-dimensional problems; even for curved line or surface boundary elements of arbitrary shape! Numerical results are presented for some two-dimensional problems.


2019 ◽  
Vol 125 (3) ◽  
Author(s):  
Chao Li ◽  
Linchang Miao ◽  
Quan You ◽  
Huanglei Fang ◽  
Xiaodong Liang ◽  
...  

2020 ◽  
Vol 34 (11) ◽  
pp. 2050111
Author(s):  
Weikai Xu ◽  
Yingchun Tang ◽  
Meng Zhang ◽  
Wuchao Qi ◽  
Wei Wang

In this study, an arbitrary shaped acoustic omnidirectional absorber (AOA) is achieved for absorbing incoming acoustic/elastic waves in the ambient environment. Using the transformation acoustics theory, we present a theoretical framework for two-dimensional acoustic path guidance around arbitrary shapes for which the material parameters in the transformed space can be obtained analytically. Results indicate that the transformed space is distorted rather than compressed; numerical simulations confirm that these absorbers exhibit a remarkably large absorption and that the proposed method can control acoustic absorption for arbitrary geometries of interest. This method can potentially be applied to sound absorption and noise control.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950403
Author(s):  
Fengxiang Guo ◽  
Hui Guo ◽  
Pei Sun ◽  
Tao Yuan ◽  
Yansong Wang

Viscoelastic materials can dissipate energy and hinder propagation for plane waves, which can adjust the band structures of phononic crystals (PCs). In this study, the wave propagation in a two-dimensional PC with a viscoelastic matrix is investigated. The Maxwell model is utilized to analyze the effect of material parameters on the frequency dependence of viscoelasticity. Material parameters include the relaxation time, the initial value and the final value of the shear modulus. Band structures of viscoelastic phononic crystals (VPCs) are solved by combining the plane wave expansion method and iterative algorithm based on Bloch theory. The effects of the viscoelasticity on the band structures are studied using the single-mode and multi-mode Maxwell models. Results reveal that the viscoelasticity of the materials not only extends the band gaps but also shifts the band gaps to lower frequencies. Furthermore, the viscoelasticity simulated by the multi-mode model can precisely adjust anyone of the band gaps of VPCs separately. Results provide insights into the design and applications of VPCs.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Fatin F. Mahmoud ◽  
Ahmed G. El-Shafei ◽  
Amal E. Al-Shorbagy ◽  
Alaa A. Abdel Rahman

In the design process, one of the main targets is to reduce the peak values of the contact stresses. This can be attained by layering the contacting bodies by layers of different material characteristics. Viscoelastic materials are characterized by either a stress relaxation or a creep deformation; therefore, the contacting bodies can be layered with such materials to attain this target. This paper discusses effects of the material characteristics of viscoelastic layers upon the unbounded contact configuration. Three material parameters are considered: the layer/contact solids stiffness ratio, the delayed/instantaneous elasticity ratio, and the material relaxation time. The results are obtained by using a two-dimensional time-dependent nonlinear computational model, developed by the authors, capable of analyzing quasistatic viscoelastic frictional contact problems.


Sign in / Sign up

Export Citation Format

Share Document