Multi-information-based convolutional neural network with attention mechanism for pedestrian trajectory prediction

2021 ◽  
Vol 107 ◽  
pp. 104110
Author(s):  
Ruiping Wang ◽  
Yong Cui ◽  
Xiao Song ◽  
Kai Chen ◽  
Hong Fang
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Ling Zhang ◽  
Jingzhi Zhang ◽  
Jiong Niu ◽  
Q. M. Jonathan Wu ◽  
Gangsheng Li

High-frequency (HF) surface-wave radar has a wide range of applications in marine monitoring due to its long-distance, wide-area, and all-weather detection ability. However, the accurate detection of HF radar vessels is severely restricted by strong clutter and interference, causing the echo of vessels completely submerged by clutter. As a result, the target cannot be detected and tracked for a period of time under the influence of strong clutter, which causes broken trajectories. To solve this problem, we propose an HF radar-vessel trajectory-prediction method based on a multi-scale convolutional neural network (MSCNN) that combines a gated recurrent unit and attention mechanism (GRU-AM) and a fusion with an autoregressive (AR) model. The vessel’s latitude and longitude information obtained by the HF radar is sent into the convolutional neural network (CNN) with different window lengths in parallel, and feature fusion is performed on the extracted multi-scale features. The deep GRU model is built to learn the time series with the GRU structure to preserve historical information. Different weights are given to the features using the temporal attention mechanism (AM), which helps the network learn the key information. The linear information on latitude and longitude at the current timestep is forecast by combining the AR model with the trajectory output from the AM to achieve a combination of linear and nonlinear prediction models. To make full use of the HF radar tracking information, the broken trajectory prediction is carried out by forward and backward computation using data from before and after the fracture, respectively. Weights are then assigned to the two predicted results by the entropy-value method to obtain the final ship trajectory by weighted summation. Field experiments show that the proposed method can accurately forecast the trajectories of vessels concealed in clutter. In comparison with other mainstream methods, the new method performs better in estimation accuracy for HF radar vessels concealed in clutter.


2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880594 ◽  
Author(s):  
Xu Kang ◽  
Bin Song ◽  
Jie Guo ◽  
Xiaojiang Du ◽  
Mohsen Guizani

Vehicle tracking task plays an important role on the Internet of vehicles and intelligent transportation system. Beyond the traditional Global Positioning System sensor, the image sensor can capture different kinds of vehicles, analyze their driving situation, and can interact with them. Aiming at the problem that the traditional convolutional neural network is vulnerable to background interference, this article proposes vehicle tracking method based on human attention mechanism for self-selection of deep features with an inter-channel fully connected layer. It mainly includes the following contents: (1) a fully convolutional neural network fused attention mechanism with the selection of the deep features for convolution; (2) a separation method for template and semantic background region to separate target vehicles from the background in the initial frame adaptively; (3) a two-stage method for model training using our traffic dataset. The experimental results show that the proposed method improves the tracking accuracy without an increase in tracking time. Meanwhile, it strengthens the robustness of algorithm under the condition of the complex background region. The success rate of the proposed method in overall traffic datasets is higher than Siamese network by about 10%, and the overall precision is higher than Siamese network by 8%.


2020 ◽  
Vol 38 (2) ◽  
pp. 1929-1941 ◽  
Author(s):  
Huan-Huan Wang ◽  
Sheng-Wei Tian ◽  
Long Yu ◽  
Xian-Xian Wang ◽  
Qing-Shan Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document