Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase

2017 ◽  
Vol 184 ◽  
pp. 92-97 ◽  
Author(s):  
Romina Vargas ◽  
Luis A. Videla
2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Yi Liu ◽  
Lijian Zhang ◽  
Yan Qu ◽  
Chao Gao ◽  
Jingyi Liu ◽  
...  

As an inhibitor of the antioxidant thioredoxin, thioredoxin-interacting protein (Txnip) is linked to insulin resistance. NLRP3 inflammasome, a major regulator of innate immunity, has been reported to be activated by Txnip, thus contributing to the pathogenesis of type 2 diabetes mellitus. However, the role of Txnip and its NLRP3 inflammasome activation in the myocardial ischemia/reperfusion (MI/R) injury has not been previously investigated. C57BL/6J mice were subjected to 30 min of ischemia and 3 or 24 hrs of reperfusion. The ischemic heart exhibited increased Txnip and NLRP3 expressions, increased interaction between Txnip and NLRP3 (by immunoprecipitation, 1.8-fold increase over sham), and increased IL-1β, IL-18 and caspase-1 expressions (%increase: 80%, 77% and 110%, respectively) (n=8, all P <0.05). Compared with vehicle group, those mice either receiving intramyocardial small-interfering RNA (siRNA) injection to specifically knockdown the myocardial NLRP3 or intraperitoneal injection of the inflammasome inhibitor (BAY 11-7082) exhibited significantly improved cardiac function (by 28% and 25%), decreased the infarct size (by 40% and 38%), and decreased the cardiomyocytes apoptosis (all P <0.05). NLRP3 knockdown or inflammasome inhibitor also decreased the inflammatory cells infiltration (macrophages and neutrophils) and cytokines (TNF-α, INF-γ and IL-6) production (all P <0.05). To elucidate the role of Txnip in the NLRP3 activation in MI/R, intramyocardial injection of Txnip siRNA was performed to specifically knockdown the myocardial Txnip expression. Compared with vehicle, the Txnip knockdown significantly decreased Txnip/NLRP3 interaction and NLRP3activation as evidenced by lower expressions of IL-1β and caspase-1, decreased inflammatory cells infiltration and cytokines expressions, and consequently decreased the myocardial infarct size and increased the heart function (all P <0.05). Collectively, we demonstrated for the first time that Txnip mediatedNLRP3 inflammasome activation is a novel mechanism of MI/R injury. Interventions targeted to blocking the activation of NLRP3 by inhibiting Txnip may have therapeutic potential for preventing MI/R injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Elisa Benetti ◽  
Fausto Chiazza ◽  
Nimesh S. A. Patel ◽  
Massimo Collino

The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1βand IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.


2020 ◽  
Vol 19 (5) ◽  
pp. 1031-1036
Author(s):  
Guixiang Zhao ◽  
Xiaoyun Ma ◽  
Juledezi Hailati ◽  
Zhen Bao ◽  
Maerjiaen Bakeyi ◽  
...  

Purpose: To determine the involvement of NLRP3 signaling pathway in the preventive role of daucosterol in acute myocardial infarction (AMI).Methods: H9C2 cells were pretreated with daucosterol before hypoxia/reoxygenation (HR) injury. Myocardial ischemia reperfusion (IR) was established in male SD rats, followed by reperfusion. Myocardial infarct size was measured. The serum levels of creatine kinase (CK), lactate  dehydrogenase (LDH), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were determined using commercial kits. NLRP3 inflammasome activation was assessed by western blotting.Results: Myocardial infarct size was smaller after IR injury in rats pretreated with daucosterol (10 and 50 mg/kg) than that pretreated with daucosterol (0 and 1 mg/kg). The increase in LDH, CK, and MDA levels after IR injury was reduced following daucosterol pretreatment. Reactive oxygen species (ROS) production increased, whereas T-SOD activity decreased after IR injury. These changes were prevented by pretreatment of daucosterol (10 and 50 mg/kg). Protein expression of NLRP3 inflammasome increased after IR injury in H9C2 cells while pretreatment with daucosterol inhibited the upregulation of NLRP3 inflammasome.Conclusion: The cardioprotective effect of daucosterol pretreatment appears to be mediated via the inactivation of ROS-related NLRP3 inflammasome, suggesting that daucosteol might be a potential therapeutic drug for AMI. Keywords: Daucosterol, Myocardial ischemia, Reperfusion injury, Reactive oxygen species, NLRP3 inflammasome


2019 ◽  
Vol 118 ◽  
pp. 109217 ◽  
Author(s):  
Jinlong Wei ◽  
Heru Wang ◽  
Huanhuan Wang ◽  
Bin Wang ◽  
Lingbin Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document