metabolic inflammation
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 114)

H-INDEX

32
(FIVE YEARS 10)

Author(s):  
Yihang Li ◽  
Kyan M Thelen ◽  
Karina Matos Fernández ◽  
Rahul Nelli ◽  
Mahsa Fardisi ◽  
...  

Early life adversity (ELA) is linked with the increased risk for inflammatory and metabolic diseases in later life but the mechanisms remain poorly understood. Intestinal epithelial glucose transporters SGLT1 and GLUT2 are the major route for intestinal glucose uptake but have also received increased attention as modulators of inflammatory and metabolic diseases. Here we tested the hypothesis that early weaning (EW) in pigs, an established model of ELA, alters the development of epithelial glucose transporters and coincides with elevated markers of metabolic inflammation. Jejunum and ileum of 90 d old pigs previously exposed to EW (16 d wean age), exhibited reduced SGLT1 activity (by ~ 30%, P<0.05), compared with late weaned (LW, 26 d wean age) controls . In contrast, GLUT2-mediated glucose transport was increased (P = 0.003) in EW pigs compared with LW pigs. Reciprocal changes in SGLT1 and GLUT2-mediated transport coincided with transporter protein expression in the intestinal brush border membranes (BBM) that were observed at 90 d and 150 d of age. Ileal SGLT1-mediated glucose transport and BBM expression were Inhibited by the β-adrenergic receptor (βAR) blocker propranolol in EW and LW pigs. In contrast, propranolol enhanced ileal GLUT2-mediated glucose transport (P=0.015) and BBMV abundance (P=0.035) LW pigs, but not EW pigs. Early weaned pigs exhibited chronic elevated blood glucose and C-Reactive Protein (CRP) levels, and adipocyte hypertrophy and upregulated adipogenesis-related gene expression in visceral adipose tissue. Altered development of intestinal glucose transporters by EW could underlie the increased risk for later life inflammatory and metabolic diseases.


Author(s):  
Alessandra Pinzon Grimaldos ◽  
Simone Bini ◽  
Ilenia Pacella ◽  
Alessandra Rossi ◽  
Alessia Di Costanzo ◽  
...  

Abstract Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5767
Author(s):  
Min Deng ◽  
Rianne D. W. Vaes ◽  
Annemarie A. J. H. M. van Bijnen ◽  
Steven W. M. Olde Damink ◽  
Sander S. Rensen

Systemic inflammation is thought to underlie many of the metabolic manifestations of cachexia in cancer patients. The complement system is an important component of innate immunity that has been shown to contribute to metabolic inflammation. We hypothesized that systemic inflammation in patients with cancer cachexia was associated with complement activation. Systemic C3a levels were higher in cachectic patients with inflammation (n = 23, C-reactive protein (CRP) ≥ 10 mg/L) as compared to patients without inflammation (n = 26, CRP < 10 mg/L) or without cachexia (n = 13) (medians 102.4 (IQR 89.4–158.0) vs. 81.4 (IQR 47.9–124.0) vs. 61.6 (IQR 46.8–86.8) ng/mL, respectively, p = 0.0186). Accordingly, terminal complement complex (TCC) concentrations gradually increased in these patient groups (medians 2298 (IQR 2022–3058) vs. 1939 (IQR 1725–2311) vs. 1805 (IQR 1552–2569) mAU/mL, respectively, p = 0.0511). C3a and TCC concentrations were strongly correlated (rs = 0.468, p = 0.0005). Although concentrations of C1q and mannose-binding lectin did not differ between groups, C1q levels were correlated with both C3a and TCC concentrations (rs = 0.394, p = 0.0042 and rs = 0.300, p = 0.0188, respectively). In conclusion, systemic inflammation in patients with cancer cachexia is associated with the activation of key effector complement factors. The correlations between C1q and C3a/TCC suggest that the classical complement pathway could play a role in complement activation in patients with pancreatic cancer.


2021 ◽  
Author(s):  
Vinícius Peixoto Rodrigues ◽  
Maycon Emílio-Silva ◽  
Rie Ohara ◽  
Gabriela Bueno ◽  
Priscila Romano Raimundo ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
Q Su ◽  
S Kaluzny

Abstract Introduction In humans, circulating metabolite Trimethylamine N-oxide (TMAO) is closely associated with higher risk of cardiovascular disease. Trimethylamine (TMA), a precursor of TMAO, is produced by gut microbiome using dietary components, i.e., choline and carnitine, as substrates. The gut-derived TMA is then transferred to the liver where it is further oxidized to TMAO by the flavin-containing monooxygenases (FMOs). The ER-resident transcription factor c-AMP responsive element binding protein H (CREBH/CREB3L3) is exclusively expressed in the liver and intestine. Perturbation of CREBH activity contributes to the development of hyperlipidemia and cardiovascular disease. Therefore, the Purpose of this study is to investigate the regulatory effect of a gut bacterium, Akkermansia muciniphila (A. muciniphila), on TMA and TMAO metabolism and the role of CREBH in this process. Methods Two groups of wild type (WT) and CREBH knockout (CREBH-KO) mice were inoculated with 200 μL of A. muciniphila (2×108 cfu/0.2 mL) in PBS or the vehicle (PBS) alone as control every other day through oral gavage for 2 weeks. Plasmas, liver and intestinal tissues were collected for metabolomics analysis, immunoblotting analysis and q-RT-PCR. Results Metabolomics analysis of the plasmas from the experimental mice revealed that increased colonization of A. muciniphila in the gut significantly reduced circulating TMA in the WT mice but not in CREBH-KO mice (P&lt;0.05), suggesting that depletion of CREBH altered the microenvironment of gut microbiome which affected the metabolism of TMA by gut bacteria. In the livers, A. muciniphila treatment markedly reduced mRNA expression of FMO1 and FMO3 (P&lt;0.05), which subsequently inhibited the enzymatic conversion of TMA to TMAO in hepatocytes. Immunoblotting analysis further revealed that LDL receptor was upregulated whereas ER stress markers, GRP94 and JNK1/2, were downregulated in the A. muciniphila treated KO mice, indicating an acceleration in lipoprotein (VLDL remnant) clearance from the circulation and the improvement of metabolic inflammation. In vitro, incubation of mouse hepatocytes AML12 with TMA (600 mM) for 12 hours stimulated expression of FMOs to facilitate the conversion of TMA to TMAO and induced lipotoxicity. Conclusion CREBH mediates the crosstalk between gut microbiome and liver metabolic system that regulates TMA and TMAO metabolism, which contributes to the induction of metabolic inflammation and atherogenesis. This novel finding may lend support to the therapeutic strategy of atherosclerosis. FUNDunding Acknowledgement Type of funding sources: Foundation. Main funding source(s): British Heart Foundation


2021 ◽  
Vol 142 ◽  
pp. 112012
Author(s):  
Rahim Ullah ◽  
Naveed Rauf ◽  
Ghulam Nabi ◽  
Shen Yi ◽  
Zhou Yu-Dong ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 1268-1279 ◽  
Author(s):  
Jingfei Yao ◽  
Dongmei Wu ◽  
Chunyan Zhang ◽  
Ting Yan ◽  
Yiheng Zhao ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yabin Gao ◽  
Ruibing Yang ◽  
Lan Guo ◽  
Yaoxian Wang ◽  
Wei Jing Liu ◽  
...  

Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3045
Author(s):  
Zubaidah Hasain ◽  
Nur Aishah Che Roos ◽  
Frhana Rahmat ◽  
Marami Mustapa ◽  
Raja Affendi Raja Ali ◽  
...  

Dynamic interactions among gestational diabetes mellitus (GDM), gut microbiota, inflammation, oxidative stress, and probiotics are increasingly acknowledged. This meta-analysis aimed to summarize the effects of probiotics in GDM, focusing on lifestyle intervention and pre-intervention washout, in addition to metabolic, inflammation, oxidative stress, and pregnancy outcomes. Three electronic databases (i.e., PubMed, Scopus, and CENTRAL) were searched from inception until October 2020. A meta-analysis was performed, and the effect sizes were reported as either mean differences or odds ratios with 95% confidence intervals. Altogether, 10 randomized controlled trials enrolling 594 participants were included. The meta-analysis indicated that probiotics supplementation effectively reduced fasting plasma glucose by 3.10 mg/dL, and subgroup analyses suggested that the duration of intervention, number of species, pre-intervention washout period, and dietary intervention may determine the effects of probiotics. Probiotics also reduced the level of inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-α, and malondialdehyde), incidence of macrosomia, and newborn hospitalization. In conclusion, this meta-analysis suggests that probiotics may have positive effects on metabolic, inflammation, oxidative stress, and neonatal outcomes in women with GDM. Additionally, diet and pre-intervention washout may modify the effects of probiotics. Future studies are warranted on a larger scale to ascertain the clinical significance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tom Houben ◽  
Tulasi Yadati ◽  
Robbin de Kruijf ◽  
Marion J. J. Gijbels ◽  
Joost J. F. P. Luiken ◽  
...  

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-β-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Sign in / Sign up

Export Citation Format

Share Document