leucine rich repeat protein
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 25)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Robert K. Leśniak ◽  
R. Jeremy Nichols ◽  
Marcus Schonemann ◽  
Jing Zhao ◽  
Chandresh R. Gajera ◽  
...  

2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding F-box and leucine-rich repeat protein 22, FBXL22, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. FBXL22 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. These data indicate that expression of FBXL22 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. FBXL22 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xiaoyong Huang ◽  
Haiyan Shi ◽  
Xinghai Shi ◽  
Xuemei Jiang

Abstract Background Cervical cancer (CC) is one of the most common and malignant tumors in women. In this study, we aim to explore the role and mechanism of F-box and leucine rich repeat protein 19 antisense RNA 1 (FBXL19-AS1), a novel long-chain non coding RNA (lncRNA) with marked roles in a variety of tumors, in regulating the proliferation and metastasis of CC. Methods The expression of FBXL19-AS1, miR-193a-5p and COL1A1 were detected by RT-PCR and western blot. Gain- and loss-of functional assays of FBXL19-AS1 and miR-193a-5p were performed in CC cell lines in vitro or in vivo. The proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition (EMT) of CC cells were determined. Results FBXL19-AS1 and COL1A1 were significantly up-regulated in CC tissues, while miR-193a-5p was significantly down-regulated. Overexpression of FBXL19-AS1 significantly promoted the proliferation, migration, invasion, EMT and growth of CC cells and inhibited apoptosis, while knockdown of FBXL19-AS1 had the opposite effects. On the other hand, miR-193a-5p inhibited the proliferation and metastasis of CC cells. Mechanistically, FBXL19-AS1 functioned as a competitive endogenous RNA (ceRNA) and inhibited the expression of miR-193a-5p, which targeted at the 3’-UTR site of COL1A1 and negatively regulated COL1A1 expression. Conclusions FBXL19-AS1 promotes the proliferation and metastasis of CC cells by sponging miR-193a-5p and up-regulating COL1A1.


2021 ◽  
Vol 27 ◽  
Author(s):  
Seong Won Moon ◽  
Hyun Ji Son ◽  
Ha Yoon Mo ◽  
Nam Jin Yoo ◽  
Sug Hyung Lee

Nucleotide-binding and leucine-rich repeat protein (NLRP) genes are involved in inflammasome formation that plays a role in inflammation/host defense and cell death. Both cell death and inflammation are crucial for cancer development, but the roles of NLRPs in cancer are partially known. In this study, we analyzed mononucleotide repeats in coding sequences of NLRP1, NLRP2, NLRP4 and NLRP9, and found 1, 1, 1 and 8 frameshift mutation (s) in gastric (GC) and colonic cancers (CRC), respectively. Five of the 32 high microsatellite instability (MSI-H) GCs (15.5%) and 6 of 113 MSI-H CRCs (5.5%) exhibited the frameshift mutations. There was no NLRP frameshift mutations in microsatellite stable (MSS) GCs and CRCs. We also discovered that 2 of 16 CRCs (12.5%) harbored intratumoral heterogeneity (ITH) of the NLRP9 frameshift mutations in one or more areas. In both GC and CRC with MSI-H, NLRP9 expression in NLRP9-mutated cases was significantly lower than that in NLRP9-non-mutated cases. Our data indicate that NLRP9 is altered at multiple levels (frameshift mutation, mutational ITH and loss of expression), which together could contribute to pathogenesis of MSI-H GC and CRC.


Author(s):  
Jason J. Kwon ◽  
William C. Hahn

SHOC2 is a prototypical leucine-rich repeat protein that promotes downstream receptor tyrosine kinase (RTK)/RAS signaling and plays important roles in several cellular and developmental processes. Gain-of-function germline mutations of SHOC2 drive the RASopathy, Noonan-like syndrome, and SHOC2 mediates adaptive resistance to mitogen-activated protein kinase (MAPK) inhibitors. Similar to many scaffolding proteins, SHOC2 facilitates signal transduction by enabling proximal protein interactions and regulating the subcellular localization of its binding partners. Here we review the structural features of SHOC2 that mediate its known functions, discuss these elements in the context of various binding partners and signaling pathways, and highlight areas of SHOC2 biology where a consensus view has not yet emerged.


2021 ◽  
Vol 61 (1) ◽  
pp. 723-743
Author(s):  
Timothy R. Baffi ◽  
Ksenya Cohen-Katsenelson ◽  
Alexandra C. Newton

Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.


Author(s):  
Agnieszka T. Kawashima ◽  
Cassandra Wong ◽  
Gema Lordén ◽  
Charles C. King ◽  
Pablo Lara-Gonzalez ◽  
...  

PH domain Leucine-Rich Repeat Protein Phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the pro-survival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner, and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE, and gains proximity with kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor suppressive function.


Nature ◽  
2020 ◽  
Vol 588 (7837) ◽  
pp. 277-283 ◽  
Author(s):  
Sean Walkowiak ◽  
Liangliang Gao ◽  
Cecile Monat ◽  
Georg Haberer ◽  
Mulualem T. Kassa ◽  
...  

AbstractAdvances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Sign in / Sign up

Export Citation Format

Share Document