Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation

2020 ◽  
pp. 113091
Author(s):  
Yu Yin ◽  
Chunhui Ma ◽  
Wei Li ◽  
Sha Luo ◽  
Yushan Liu ◽  
...  
2013 ◽  
Author(s):  
Juliano B. Azeredo ◽  
Marcelo Godoi ◽  
Fábio Z. Galetto ◽  
Giancarlo Viccari Botteselle ◽  
Vanessa Nascimento ◽  
...  

2010 ◽  
Vol 38 (5) ◽  
pp. 554-559 ◽  
Author(s):  
Jun DU ◽  
Ping LIU ◽  
Zuo-hua LIU ◽  
Da-gui SUN ◽  
Chang-yuan TAO

Holzforschung ◽  
2018 ◽  
Vol 72 (12) ◽  
pp. 1025-1030
Author(s):  
Mafuyu Saito ◽  
Takao Kishimoto ◽  
Masahiro Hamada ◽  
Noriyuki Nakajima ◽  
Daisuke Urabe

AbstractConversion of lignocellulose into useful chemicals is an important research topic in the area of biomass utilization. In this study, microcrystalline cellulose (MC) was dissolved in a mixed-solvent system containing the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) andN-methyl-pyrrolidone (NMP), and the cellulose was directly converted into methyl glucoside (MG) by acid-catalyzed methanolysis aided by microwave irradiation (μWIr). Under moderate reaction temperature and pressure, and in the presence of acetyl chloride/methanol (in situformed HCl) as an acid catalyst, MG was obtained in a 42% yield. In contrast, in the absence of either IL or μWIr, the MG yield was only 5 or 21%, respectively. Both μWIr and the dissolution of cellulose in IL were quite effective for the conversion of cellulose into MG.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Feray Aydogan ◽  
Cigdem Yolacan

A new procedure to synthesize the N-substituted pyrrole derivatives by Clauson Kaas reaction catalyzed by acidic ionic liquid under microwave irradiation was developed. This procedure provides several advantages such as high yield, clean product formation, and short reaction time.


Sign in / Sign up

Export Citation Format

Share Document