cellulose structure
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Jie Yang ◽  
Jie Zhao ◽  
Bobo Wang ◽  
Zhisheng Yu

Anaerobic cellulolytic microbes in gastrointestinal tract (GT) of ruminants have been well-documented, however, knowledge of aerobic microbes with cellulolytic activities in ruminant GT is comparably limited. Here, we unraveled aerobic cultivable cellulolytic microbes in GT of Ujimqin sheep (Ovis aries) and evaluated the cellulolytic potential of promising isolates. Twenty-two strains were found to possess cellulose degrading potential by Congo-red staining and phylogenetic analysis of the 16S rDNA/ITS sequence revealed that all strains belonged to nine genera, i.e., Bacillus, Streptomyces, Pseudomonas, Lactobacillus, Brachybacterium, Sanguibacter, Rhizobium, Fusarium, and Aspergillus. Strains with high cellulolytic activities were selected to further evaluate the various enzyme activities on lignocellulosic alfalfa hay (Medicago sativa). Among them, isolate Bacillus subtilis RE2510 showed the highest potential of cellulose degradation considering the high endoglucanase (0.1478 ± 0.0014 IU ml-1), exoglucanase (0.1735 ± 0.0012 IU ml-1) and β-glucosidase (0.3817 ± 0.0031 IU ml-1) after 10-day incubation with alfalfa hay. A significant destruction effect of the cellulose structure and the attachment of B. subtilis RE2510 to the hay were also revealed by using scanning electron microscope. This study expands our knowledge of aerobic cellulolytic isolates from GT of sheep and also highlights their potential application as microbial additive in the aerobic process of cellulose bioconversion.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 971-979
Author(s):  
SHAKIBA BAGHERI ◽  
◽  
MEHDI RAHMANINIA ◽  
RABI BEHROOZ ◽  
◽  
...  

Using lignocellulosic materials for producing more value-added bioproducts is an attractive mission. Fiber fines, which represent an important part of the wastes generated by paper recycling mills, have been considered in the current research. Dissolving these lignocellulosic residues in environmentally friendly and inexpensive solvents can be a great achievement. For this purpose, the performance of urea/sodium hydroxide in dissolving printing and writing pulp (RPW) fines was investigated. Although using sodium hydroxide alone had a positive effect on the dissolution of recycled printing and writing pulp (RPWP) fines, the addition of urea increased the dissolution of fines from 23% to 56%. Different levels of urea consumption had no significant effect on the dissolving process. The performance of the urea/sodium hydroxide system in dissolving fines suspensions with different concentration (1, 3 and 5%) showed that reducing the concentration leads to an increase in fines dissolution (56, 36 and 7%, respectively). The results of FTIR confirmed the presence of cellulose without any hemicelluloses and lignin in the dissolving part. The results of X-ray diffraction analysis of soluble cellulose showed that the type-I cellulose structure probably changed to type-II cellulose. No reduction in the DP of dissolved cellulose and the integrated structure of the final cellulosic film confirmed by the FE-SEM images affirmed the successful dissolution of the RPWP fines in this system.


2021 ◽  
Vol 2133 (1) ◽  
pp. 012001
Author(s):  
Baoqiong Guo ◽  
Xiaoan Wei ◽  
Binbin Wang

Abstract In this research, nitrocellulose / magnesium borohydride nanomaterials (NC / Mg(BHx)y) nanoenergetic composite materials are synthesized through sol-gel method and the freeze-drying technology. Among them, nitrocellulose (NC) is used as a gel matrix to load Mg(BHx)y particles. Scanning electron microscopy (SEM) results show that Mg(BHx)y is embedded and uniformly dispersed in the NC matrix. The particle size of the high-energy composite material is about 2 μm. The results of FT-IR showed that the hydrogen storage alloy was successfully loaded around the NC without destroying the cellulose structure. The composite material decomposition reaction (Temperature-Time) curve is obtained through the adiabatic accelerated calorimeter (ES-ARC) test.


2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Pieter Samyn

The classical production of microfibrillar cellulose involves intensive mechanical processing and discontinuous chemical treatment in solvent-based media in order to introduce additional chemical surface modification. By selecting appropriate conditions of a pulsed plasma reactor, a solvent-free and low-energy input process can be applied with the introduction of microcrystalline cellulose (MCC) and maleic anhydride (MA) powders. The plasma processing results in the progressive fibrillation of the cellulose powder into its elementary fibril structure and in-situ modification of the produced fibrils with more hydrophobic groups that provide good stability against re-agglomeration of the fibrils. The selection of a critical ratio MA/MCC = 2:1 allows separating the single cellulose microfibrils with changeable morphologies depending on the plasma treatment time. Moreover, the density of the hydrophobic surface groups can be changed through a selection of different plasma duty cycle times, while the influence of plasma power and pulse frequency is inferior. The variations in treatment time can be followed along the plasma reactor, as the microfibrils gain smaller diameter and become somewhat longer with increasing time. This can be related to the activation of the hierarchical cellulose structure and progressive diffusion of the MA within the cellulose structure, causing progressive weakening of the hydroxyl bonding. In parallel, the creation of more reactive species with time allows creating active surface sites that allow for interaction between the different fibrils into more complex morphologies. The in-situ surface modification has been demonstrated by XPS and FTIR analysis, indicating the successful esterification between the MA and hydroxyl groups at the cellulose surface. In particular, the crystallinity of the cellulose has been augmented after plasma modification. Furthermore, AFM evaluation of the fibrils shows surface structures with irregular surface roughness patterns that contribute to better interaction of the microfibrils after incorporation in an eventual polymer matrix. In conclusion, the combination of physical and chemical processing of cellulose microfibrils provides a more sustainable approach for the fabrication of advanced nanotechnological materials.


Author(s):  
Yu. A. Gismatulina ◽  
V. V. Budaeva ◽  
A. E. Sitnikova ◽  
N. V. Bychin ◽  
E. K. Gladysheva ◽  
...  

Abstract: Scaling biosynthesis of bacterial nanocellulose (BNC) allowed samples of composite paper with an increased proportion of BNC to be obtained. This work aims to study BNC samples and bleached soft wood kraft pulp (BSKP) composite paper with a ratio of components varying across a wide range: 10:90, 30:70, 50:50, 60:40, 70:30, 90:10. The method of paper manufacturing was chosen based on the determinations of strength and deformation properties of composite samples with the BNC:BSKP ratio of 20:80. Surface application of BNT on BSKP handsheet provided for an increase in the strength values (tear resistance – by 37%, burst index – by 17%) and deformation characteristics (tension stiffness – by 66%, fracture work – by 8%, breaking length – by 4%) compared to a reference sample. The formation of composites is confirmed in all samples. Scanning electron spectroscopy revealed that paper composites comprise interlaced micro BSKP and nano BNC fibres. As the proportion of BNC in composites elevated, densification of the structure was observed due to an increased fraction of cross-linked nanosized elements. IR spectroscopy indicated the resemblance of cellulose structure in all samples. It was found that an increase in the degree of polymerisation of composite paper is directly proportional to an increase in the BNC amount in the samples. The filtering ability of composite paper samples against microorganisms in the culture liquid of the Medusomyces gisevii Sa-12 producer was studied. It should be noted that yeast retention is achieved with 70% BNC in the paper composite. The presented properties of the new material determine prospects for its use in filtering microorganisms.


2021 ◽  
Vol 50 (9) ◽  
pp. 2523-2535
Author(s):  
Nurul Suhada Ab Rasid ◽  
Muzakkir Mohammad Zainol ◽  
Nor Aishah Saidina Amin

Oil palm empty fruit bunch (EFB), a cellulose rich lignocellulosic biomass has huge potential to be utilised as a raw material for the synthesis of carboxymethyl cellulose (CMC). In this study, CMC was synthesised from EFB extracted cellulose at the optimum carboxymethylation reaction conditions. The extracted cellulose yield obtained by alkaline treatment followed by bleaching with hydrogen peroxide was 45.5 wt.%. The cellulose structure was elucidated using thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) patterns. Meanwhile, the synthesised CMC was characterised with FT-IR, XRD and scanning electron microscopy (SEM). The maximum degree of substitution (DS) obtained was 1.30 with the yield of 177.51 wt.% and purity 89% determined using chemical methods at the optimum conditions of 30 wt.% of NaOH, 18 g of SMCA, 65 °C, 3 h reaction time and less than 75 μm of EFB-cellulose particle size. XRD analysis inferred low crystallinity while FTIR spectra verified the CMC structure and presence of different functional groups. The results for DS and EFB CMC yield obtained from this work were considerably higher than those reported in the literature. The synthesised EFB CMC can be further utilised in various industries such as detergent, mining, flotation, and oil and gas drilling muds applications.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Cuiffo ◽  
Hye Jung Jung ◽  
Asta Skocir ◽  
Theanne Schiros ◽  
Emily Evans ◽  
...  

AbstractTextile waste presents a major burden on the environment, contributing to climate change and chemical pollution as toxic dyes and finishing chemicals enter the environment through landfill leachate. Moreover, the majority of textile waste reaching landfills is discarded clothing, which could be reused or recycled. Here we investigate environmentally benign morphology changing of cotton textiles as a precursor for reintegration into a circular materials economy. At 50 °C using low concentrations of acids and bases, the interfiber structures of woven cotton were successfully degraded when treated with the following sequence of chemical treatment: citric acid, urea, sodium hydroxide, ammonium hydroxide, and sodium nitrate. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) reveal separation of the constituent fibers without depolymerization of the cellulose structure, and streaming potential measurements indicate that surface charge effects play a key role in facilitating degradation. The proposed reaction procedures show feasibility of effective waste-fabric recycling processes without chemically intensive processes, in which staple fibers are recovered and can be re-spun into new textiles.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jordão Cabral Moulin ◽  
Alisson Farley Soares Durães ◽  
Matheus Cordazzo Dias ◽  
Luiz Eduardo Silva ◽  
Allan de Amorim dos Santos ◽  
...  

Abstract The objective of the present work was to evaluate the use of Raman microspectroscopy analysis to assess changes in cellulose micro/nanofibril structure from fibers subjected to different pre-treatments. Pulp fibers were pre-treated with 5 wt% NaOH for 2 h, 10 wt% NaOH for 1 h, and endoglucanase-type enzymes to improve nanofibrilation. After the pre-treatments, the fibers were mechanically fibrillated to produce cellulose micro/nanofibrils, which were made into films to be analyzed. Fibers pre-treated with 5 wt% NaOH produced 59% micro/nanofibrils with average diameter less than 30 nm, for Eucalyptus, and 46% of micro/nanofibrils, with the same diameter, for Pinus. However, the enzymatic pre-treatment was the most efficient, resulting in 83% of micro/nanofibrils for Eucalyptus and 78% for Pinus. This corroborates with the lowest values of the 1.096/2.896 ratio and degree of polymerization, indicating chain shortening in cellulose. X-ray diffraction and Raman microspectroscopy crystallinity results presented similar tendencies, with increased crystallinity caused by all pre-treatments, being 5 wt% NaOH for 2 h the highest, with 70%, for Eucalyptus and Pinus. Enzymatic pre-treatment has produced the best fibrillation and greater crystallinity. The present work has shown a reliable way of assessing cellulose structure using Raman microspectroscopy.


Sign in / Sign up

Export Citation Format

Share Document