scholarly journals Clauson Kaas Pyrrole Synthesis Catalyzed by Acidic Ionic Liquid under Microwave Irradiation

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Feray Aydogan ◽  
Cigdem Yolacan

A new procedure to synthesize the N-substituted pyrrole derivatives by Clauson Kaas reaction catalyzed by acidic ionic liquid under microwave irradiation was developed. This procedure provides several advantages such as high yield, clean product formation, and short reaction time.


2019 ◽  
Vol 31 (4) ◽  
pp. 829-833
Author(s):  
D.S. Bhagat ◽  
S.G. Pande ◽  
M.V. Katariya ◽  
R.P. Pawar ◽  
P.S. Kendrekar

One-pot efficient protocol to the synthesis of 2-amino-5-oxo-4,5-dihydropyrano(3,2-c)chromene-3-carbonitrile derivatives via condensation of various aryl aldehydes, dicyanomethane and 4-hydroxycoumarin in presence of Emim hydroxide as an excellent homogeneous liquid catalyst. The key advantages of this methodology are mild reaction conditions, novel catalyst, short reaction time, eco-friendly, easy work-up procedure and high yield of isolation of derivatives.



2016 ◽  
Vol 70 (8) ◽  
Author(s):  
Heshmatollah Alinezhad ◽  
Mahmood Tajbakhsh ◽  
Mahboobeh Zare ◽  
Mahbooeh Mousavi

AbstractA one-pot three-component Biginelli-like reaction of enaminones, aldehydes with urea/thiourea in the presence of 2-pyrrolidonium bisulphate as an acidic ionic liquid catalyst for the preparation of 6-unsubstituted dihydropyrimidinones is described. The excellent yield, short reaction time, simple procedure and avoidance of the use of organic solvents are some advantages of this method.



2015 ◽  
Vol 70 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Yuan Luo ◽  
Bao-Qiang Zhang ◽  
Yan-Hong He ◽  
Zhi Guan

AbstractAn acidic ionic liquid 3-methyl-2-(1-sulfobutyl)-1H-imidazolium hydrogensulfate, [BSO3HMIm]HSO4, was used as an efficient catalyst for the synthesis of a variety of pyrrole derivatives via a one-pot, three-component condensation of amines, nitroolefins, and 1,3-dicarbonyl compounds. Good to excellent yields of 72–96% were obtained under reflux in ethanol. The catalyst could easily be recovered and recycled up to six times, resulting in good yields without prolonging the reaction time. This method was also efficient in large-scale preparation. The procedure could be easily expanded to a one-pot, four-component reaction. This ionic liquid-catalyzed reaction provided an environmentally friendly alternative to the synthesis of pyrrole derivatives.



2014 ◽  
Vol 893 ◽  
pp. 23-26 ◽  
Author(s):  
Na Liu ◽  
Yong Shuai Ma ◽  
Ke Wen Shu ◽  
Bo Wu ◽  
Dong Zhang

The catalytic effect of Brønsted acidic ionic liquid for PET hydrolysis reaction under microwave irradiation has been investigated through orthogonal experiment in this article, and the influence of main reaction conditions has also been studied. The results shown that the influence level sequence of reaction factors was: catalyst kind > reaction time > reaction temperature > catalyst dosage. According to a further study of catalyst dosages influence on PET depolymerization degree, the optimal reaction condition was finally concluded as below: [Hexanemi [HSO4] used as catalyst, catalyst dosage: 0.01 mol/2 g PET, reaction time: 210 min, reaction temperature: 195 °C.



2020 ◽  
Vol 16 ◽  
pp. 168-174
Author(s):  
Jucleiton J R Freitas ◽  
Queila P S B Freitas ◽  
Silvia R C P Andrade ◽  
Juliano C R Freitas ◽  
Roberta A Oliveira ◽  
...  

The propargylation of aldehydes promoted by microwave irradiation using allenylboron compounds in a chemo- and regioselective way is described. The corresponding products were obtained in short reaction time, high yield and purity without the need of any solvent when allenylboronic acid pinacol ester was used, or using a minimal amount of acetone when potassium allenyltrifluoroborate was used.



2019 ◽  
Author(s):  
Jucleiton J R Freitas ◽  
Queila P S B Freitas ◽  
Silvia R C P Andrade ◽  
Juliano C R Freitas ◽  
Roberta A Oliveira ◽  
...  

The propargylation of aldehydes promoted by microwave irradiation using allenyl boron compounds in a chemo- and regioselective way is described. The corresponding products were obtained in short reaction time, high yield and purity without the need of any solvent when allenyl boronic acid pinacol ester was used, or using a minimal amount of acetone when potassium allenyl trifluoroborate was used.



2011 ◽  
Vol 287-290 ◽  
pp. 1696-1699
Author(s):  
Yong Hong Zhang ◽  
Zhen Kai Lei ◽  
Xiang Ju Huang ◽  
Xiao Yu Pan ◽  
Xin Hai Zhao ◽  
...  

A series of novelbis-indolylmethanes containing 1,2,3-triazolyl have been synthesized from the reaction of indoles with 4-formyl-1,2,3-triazole catalyzed by Brønsted acidic ionic liquid [PyNCH2CO2H][HSO4] under solvent-free conditions. The satisfactory results were obtained with excellent yields and short reaction time in the experimental procedure.



2019 ◽  
Vol 16 (8) ◽  
pp. 676-682
Author(s):  
Ankusab Noorahmadsab Nadaf ◽  
Kalegowda Shivashankar

The polycyclic dihydropyridine nucleus represents the heterocyclic system of invaluable core motifs with wide applications in chemical, biological and physical properties. Although this kind of compounds have been extensively synthesized by other groups, the synthesis of these compounds under CFL light intensity were not explored. The synthesis of polycyclic dihydropyridine derivatives were achieved through the reaction of 4-hydroxycoumarin, aromatic aldehydes and ammonium acetate under CFL light irradiation conditions. A series of polycyclic dihydropyridine derivatives were prepared under CFL light irradiation conditions with high yield, short reaction time, ambient condition and without the use of catalyst. The results displayed an efficient method for the synthesis of polycyclic dihydropyridine derivatives. Clean profile, short reaction time, low cost and use of CFL light intensity instead of catalyst making it a genuinely green protocol.



2020 ◽  
Vol 7 (2) ◽  
pp. 145-156
Author(s):  
Pravinkumar Patil ◽  
Gangadhar Bhopalkar ◽  
Sainath Zangade

Background: The various industrial processes have a diverse effect on the environment through pollution. In view of these observations, some environmentally benign synthetically protocols have developed under green chemistry. For rapid and sustainable synthesis, the microwave irradiation (MI) has gained popularity as a powerful tool compared to conventional synthesis. The present study describes the synthesis of novel substituted 1, 3-diaryl-2-propene-1-one derivative using alumina supported K3PO4-MWI combination. Objective: Chalcones are important compounds which are widely spread in nature like in fruits, vegetables, tea, spices, etc. The 2’-hydroxy derivative of chalcones plays an important role in the synthesis of bioactive compounds. The present communication deals with a convenient and rapid synthesis of 1, 3-diaryl-2-propene-1-one under the support of alumina-tripotassium phosphate and microwave irradiation. Our efforts are focused on the introduction of typical and easier route for the synthesis of title compounds using a microwave. All synthesized chalcones have been screened and evaluated for the antioxidant activity by DPPH and nitric oxide radical scavenging. Some of these compounds are found to be more potent scavengers and may lead to the development of a new class of antioxidants. Methods: The α, β-unsaturated carbonyl functionality contains two electrophilic centers allowing them to undergo addition and cyclization reactions with different nucleophiles. In the literature survey, we found that Chalcones were synthesized using tripotassium phosphate catalyst under refluxing by a conventional method. A novel method for the synthesis of 1, 3-diaryl-2-propene-1-one via Claisen Schmidt has been introduced by reacting substituted 2’- hydroxyl acetonaphthones with substituted aromatic aldehydes under the support of basic alumina –tripotassium phosphate via microwave radiations. Formation of corresponding Chalcones was confirmed by spectral studies followed by their screening for antioxidant activity. The scavenging activity is expressed in terms of % inhibition and IC50 value (μg/ml). Results: The structures of newly synthesized Chalcones were confirmed and in good agreement with obtained spectral analysis such as IR, NMR, Mass and elemental analysis. Commercially available basic alumina and tripotassium phosphate in combination of microwave were utilized and found to be effective, convenient route for the synthesis of 1, 3-diaryl-2-propene-1-one derivatives with desirable yields in short reaction time (5-12 min). The results of antioxidant activity revealed that the IC50 value for compounds 3a, 3d, 3e, 3f, 3g, 3h, 3j, 3l and 3n are lower than that of standard ascorbic acid to scavenge DPPH radical. This indicates that these compounds are more significant scavengers in comparison with standard drug. On the other hand, compounds 3a, 3b, 3c, 3d, 3g, 3l and 3n are more potent scavengers for NO free radical. Conclusion: We have introduced an efficient, ecofriendly, simple and fast microwave assisted method using basic alumina-tripotassium phosphate for the synthesis of 1, 3-diaryl-2-propene-1- one derivatives. Microwave irradiation provides an effective way for the preparation of Chalcones in terms of several advantages as a simple procedure, short reaction time, milder reaction condition, cleaner reaction and excellent yield. The scavenging activity of chalcones against DPPH and NO free radicals showed excellent properties of antioxidants.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hossein Abdollahi-Basir ◽  
Boshra Mirhosseini-Eshkevari ◽  
Farzad Zamani ◽  
Mohammad Ali Ghasemzadeh

AbstractA one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.



Sign in / Sign up

Export Citation Format

Share Document