Distinguishing properties and applications of higher order derivatives of Boolean functions

2014 ◽  
Vol 271 ◽  
pp. 224-235 ◽  
Author(s):  
Ming Duan ◽  
Mohan Yang ◽  
Xiaorui Sun ◽  
Bo Zhu ◽  
Xuejia Lai
2017 ◽  
Vol 21 (6) ◽  
pp. 1820-1842
Author(s):  
Wu Zhen ◽  
Ma Rui ◽  
Chen Wanji

This paper will try to overcome two difficulties encountered by the C0 three-node triangular element based on the displacement-based higher-order models. They are (i) transverse shear stresses computed from constitutive equations vanish at the clamped edges, and (ii) it is difficult to accurately produce the transverse shear stresses even using the integration of the three-dimensional equilibrium equation. Invalidation of the equilibrium equation approach ought to attribute to the higher-order derivations of displacement parameters involved in transverse shear stress components after integrating three-dimensional equilibrium equation. Thus, the higher-order derivatives of displacement parameters will be taken out from transverse shear stress field by using the three-field Hu–Washizu variational principle before the finite element procedure is implemented. Therefore, such method is named as the preprocessing method for transverse shear stresses in present work. Because the higher-order derivatives of displacement parameters have been eliminated, a C0 three-node triangular element based on the higher-order zig-zag theory can be presented by using the linear interpolation function. Performance of the proposed element is numerically evaluated by analyzing multilayered sandwich plates with different loading conditions, lamination sequences, material constants and boundary conditions, and it can be found that the present model works well in the finite element framework.


1999 ◽  
Vol 61 (1) ◽  
pp. 121-128 ◽  
Author(s):  
I. P. SHKAROFSKY

To trace rays very close to the nth electron cyclotron harmonic, we need the mildly relativistic plasma dispersion function and its higher-order derivatives. Expressions for these functions have been obtained as an expansion for nearly perpendicular propagation in a region where computer programs have previously experienced difficulty in accuracy, namely when the magnitude of (c/vt)2 (ω−nωc)/ω is between 1 and 10. In this region, the large-argument expansions are not yet valid, but partial cancellations of terms occur. The expansion is expressed as a sum over derivatives of the ordinary dispersion function Z. New expressions are derived to relate higher-order derivatives of Z to Z itself in this region of concern in terms of a finite series.


2007 ◽  
Vol 424 (1) ◽  
pp. 240-281 ◽  
Author(s):  
Hristo S. Sendov

2015 ◽  
Vol 28 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Bernd Steinbach ◽  
Christian Posthoff

The Boolean Differential Calculus (BDC) significantly extends the Boolean Algebra because not only Boolean values 0 and 1, but also changes of Boolean values or Boolean functions can be described. A Boolean Differential Equation (BDe) is a Boolean equation that includes derivative operations of the Boolean Differential Calculus. This paper aims at the classification of BDEs, the characterization of the respective solutions, algorithms to calculate the solution of a BDe, and selected applications. We will show that not only classes and arbitrary sets of Boolean functions but also lattices of Boolean functions can be expressed by Boolean Differential equations. In order to reach this aim, we give a short introduction into the BDC, emphasize the general difference between the solutions of a Boolean equation and a BDE, explain the core algorithms to solve a BDe that is restricted to all vectorial derivatives of f (x) and optionally contains Boolean variables. We explain formulas for transforming other derivative operations to vectorial derivatives in order to solve more general BDEs. New fields of applications for BDEs are simple and generalized lattices of Boolean functions. We describe the construction, simplification and solution. The basic operations of XBOOLE are sufficient to solve BDEs. We demonstrate how a XBooLe-problem program (PRP) of the freely available XBooLe-Monitor quickly solves some BDes.


1991 ◽  
Vol 7 (3) ◽  
pp. 404-408 ◽  
Author(s):  
K. Ben Nowman

This paper is concerned with deriving formulae for higher order derivatives of exogenous variables for use in estimating the parameters of an open secondorder continuous time model with mixed stock and flow data and first and second order derivatives of exogenous variables which are not observable. This should provide the basis for the future estimation of continuous time models in a range of applied areas using the new Gaussian estimation computer program developed by Nowman [4].


1995 ◽  
Vol 57 (3) ◽  
pp. 246-253 ◽  
Author(s):  
Guo-Zhao Wang ◽  
Guo-Jin Wang

Sign in / Sign up

Export Citation Format

Share Document