Adaptive output feedback tracking for time-delay nonlinear systems with unknown control coefficient and application to chemical reactors

Author(s):  
Xianglei Jia ◽  
Shengyuan Xu ◽  
Xiaocheng Shi ◽  
Baozhu Du ◽  
Zhengqiang Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xuehua Yan ◽  
Xinmin Song

This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Keylan Alimhan ◽  
Orken J. Mamyrbayev ◽  
Gaukhar A. Abdenova ◽  
Almira Akmetkalyeva

Design approach of an output feedback tracking controller is proposed for a class of high-order nonlinear systems with time delay. To deal with the time delays, an appropriate Lyapunov–Krasovskii the tracking analysis is ingeniously constructed, and an output feedback tracking controller is designed by using a homogeneous domination method. It is shown that the proposed output controller independent of time delay can make the tracking error be adjusted to be sufficiently small and render all the trajectory of the closed-loop system as bounded. An example is given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document