scholarly journals Output Tracking Control for High-Order Nonlinear Systems with Time Delay via Output Feedback Design

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Keylan Alimhan ◽  
Orken J. Mamyrbayev ◽  
Gaukhar A. Abdenova ◽  
Almira Akmetkalyeva

Design approach of an output feedback tracking controller is proposed for a class of high-order nonlinear systems with time delay. To deal with the time delays, an appropriate Lyapunov–Krasovskii the tracking analysis is ingeniously constructed, and an output feedback tracking controller is designed by using a homogeneous domination method. It is shown that the proposed output controller independent of time delay can make the tracking error be adjusted to be sufficiently small and render all the trajectory of the closed-loop system as bounded. An example is given to illustrate the effectiveness of the proposed method.

2019 ◽  
Vol 42 (8) ◽  
pp. 1511-1520
Author(s):  
Zong-Yao Sun ◽  
Yu-Jie Gu ◽  
Qinghua Meng ◽  
Wei Sun ◽  
Zhen-Guo Liu

This paper investigates the output tracking control problem for a class of nonlinear systems with zero dynamic. On the basis of adding a power integrator method and approximation technique, an appropriate controller is proposed to guarantee that the tracking error turns to a preassigned neighborhood of the origin. The systems under investigation allow unmeasurable dynamic uncertainties, unknown nonlinear functions and unknown high-order terms. As an application, two examples are provided to illustrate the effectiveness of a control strategy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Long-Chuan Guo

This paper mainly focuses on output feedback practical tracking controller design for stochastic nonlinear systems with polynomial function growth conditions. Mostly, there are some studies on output feedback tracking control problem for general nonlinear systems with parametric certainty in existing achievements. Moreover, we extend it to stochastic nonlinear systems with parametric uncertainty and system nonlinear terms are assumed to satisfy polynomial function growth conditions which are more relaxed than linear growth conditions or power growth conditions. Due to the presence of unknown parametric uncertainty, an output feedback practical tracking controller with dynamically updated gains is constructed explicitly so that all the states of the closed-loop systems are globally bounded and the tracking error belongs to arbitrarily small interval after some positive finite time. An example illustrates the efficiency of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xuehua Yan ◽  
Xinmin Song

This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Leipo Liu ◽  
Xiaona Song

This paper is concerned withH∞static output tracking control of nonlinear systems with one-sided Lipschitz condition. The dimensions of system model and reference model may be different. A static output feedback controller is designed to guarantee that the system output asymptotically tracks the reference output withH∞disturbance rejection level. A new sufficient condition is derived to obtain the static output feedback gain by linear matrix inequality (LMI), and no equality constraints can be needed. Finally, an example is given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document