ROBY: Evaluating the Adversarial Robustness of a Deep Model by its Decision Boundaries

Author(s):  
Haibo Jin ◽  
Jinyin Chen ◽  
Haibin Zheng ◽  
Zhen Wang ◽  
Jun Xiao ◽  
...  
La Matematica ◽  
2021 ◽  
Author(s):  
Roozbeh Yousefzadeh ◽  
Dianne P. O’Leary

AbstractDeep learning models have been criticized for their lack of easy interpretation, which undermines confidence in their use for important applications. Nevertheless, they are consistently utilized in many applications, consequential to humans’ lives, usually because of their better performance. Therefore, there is a great need for computational methods that can explain, audit, and debug such models. Here, we use flip points to accomplish these goals for deep learning classifiers used in social applications. A trained deep learning classifier is a mathematical function that maps inputs to classes. By way of training, the function partitions its domain and assigns a class to each of the partitions. Partitions are defined by the decision boundaries which are expected to be geometrically complex. This complexity is usually what makes deep learning models powerful classifiers. Flip points are points on those boundaries and, therefore, the key to understanding and changing the functional behavior of models. We use advanced numerical optimization techniques and state-of-the-art methods in numerical linear algebra, such as rank determination and reduced-order models to compute and analyze them. The resulting insight into the decision boundaries of a deep model can clearly explain the model’s output on the individual level, via an explanation report that is understandable by non-experts. We also develop a procedure to understand and audit model behavior towards groups of people. We show that examining decision boundaries of models in certain subspaces can reveal hidden biases that are not easily detectable. Flip points can also be used as synthetic data to alter the decision boundaries of a model and improve their functional behaviors. We demonstrate our methods by investigating several models trained on standard datasets used in social applications of machine learning. We also identify the features that are most responsible for particular classifications and misclassifications. Finally, we discuss the implications of our auditing procedure in the public policy domain.


Author(s):  
Jie Zhang ◽  
Dongdong Chen ◽  
Jing Liao ◽  
Weiming Zhang ◽  
Huamin Feng ◽  
...  

2021 ◽  
Vol 55 (1) ◽  
pp. 1-2
Author(s):  
Bhaskar Mitra

Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents---or short passages---in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms---such as a person's name or a product model number---not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections---such as the document index of a commercial Web search engine---containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks. We ground our contributions with a detailed survey of the growing body of neural IR literature [Mitra and Craswell, 2018]. Our key contribution towards improving the effectiveness of deep ranking models is developing the Duet principle [Mitra et al., 2017] which emphasizes the importance of incorporating evidence based on both patterns of exact term matches and similarities between learned latent representations of query and document. To efficiently retrieve from large collections, we develop a framework to incorporate query term independence [Mitra et al., 2019] into any arbitrary deep model that enables large-scale precomputation and the use of inverted index for fast retrieval. In the context of stochastic ranking, we further develop optimization strategies for exposure-based objectives [Diaz et al., 2020]. Finally, this dissertation also summarizes our contributions towards benchmarking neural IR models in the presence of large training datasets [Craswell et al., 2019] and explores the application of neural methods to other IR tasks, such as query auto-completion.


2021 ◽  
pp. 1-13
Author(s):  
Kai Zhuang ◽  
Sen Wu ◽  
Xiaonan Gao

To deal with the systematic risk of financial institutions and the rapid increasing of loan applications, it is becoming extremely important to automatically predict the default probability of a loan. However, this task is non-trivial due to the insufficient default samples, hard decision boundaries and numerous heterogeneous features. To the best of our knowledge, existing related researches fail in handling these three difficulties simultaneously. In this paper, we propose a weakly supervised loan default prediction model WEAKLOAN that systematically solves all these challenges based on deep metric learning. WEAKLOAN is composed of three key modules which are used for encoding loan features, learning evaluation metrics and calculating default risk scores. By doing so, WEAKLOAN can not only extract the features of a loan itself, but also model the hidden relationships in loan pairs. Extensive experiments on real-life datasets show that WEAKLOAN significantly outperforms all compared baselines even though the default loans for training are limited.


Author(s):  
Denghui Zhang ◽  
Yanchi Liu ◽  
Wei Cheng ◽  
Bo Zong ◽  
Jingchao Ni ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document