On the asymptotic equilibrium of a population system with migration

2020 ◽  
Vol 92 ◽  
pp. 115-127
Author(s):  
Augusto Pianese ◽  
Anna Attias ◽  
Sergio Bianchi ◽  
Zoltàn Varga
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kehan Si ◽  
Zhen Wu

AbstractThis paper studies a controlled backward-forward linear-quadratic-Gaussian (LQG) large population system in Stackelberg games. The leader agent is of backward state and follower agents are of forward state. The leader agent is dominating as its state enters those of follower agents. On the other hand, the state-average of all follower agents affects the cost functional of the leader agent. In reality, the leader and the followers may represent two typical types of participants involved in market price formation: the supplier and producers. This differs from standard MFG literature and is mainly due to the Stackelberg structure here. By variational analysis, the consistency condition system can be represented by some fully-coupled backward-forward stochastic differential equations (BFSDEs) with high dimensional block structure in an open-loop sense. Next, we discuss the well-posedness of such a BFSDE system by virtue of the contraction mapping method. Consequently, we obtain the decentralized strategies for the leader and follower agents which are proved to satisfy the ε-Nash equilibrium property.


1975 ◽  
Vol 5 (1) ◽  
pp. 33-39 ◽  
Author(s):  
G. Ladas ◽  
V. Lakshmikanthan

SIMULATION ◽  
1983 ◽  
Vol 41 (3) ◽  
pp. 103-117
Author(s):  
Mothiram K. Patil ◽  
P.S. Janahanial ◽  
Dhanjoo N. Ghista

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Irina Bashkirtseva ◽  
Tatyana Perevalova ◽  
Lev Ryashko

A problem of the mathematical modeling and analysis of noise-induced transformations of complex oscillatory regimes in hierarchical population systems is considered. As a key example, we use a three-dimensional food chain dynamical model of the interacting prey, predator, and top predator. We perform a comparative study of the impacts of random fluctuations on three key biological parameters of prey growth, predator mortality, and the top predator growth. A detailed investigation of the stochastic excitement, noise-induced transition from order to chaos, and various scenarios of extinction is carried out. Constructive abilities of the semi-analytical method of confidence domains in the analysis of the noise-induced extinction are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document