IL-12 promotes HBV-specific central memory CD8+ T cell responses by PBMCs from chronic hepatitis B virus carriers

2007 ◽  
Vol 7 (5) ◽  
pp. 578-587 ◽  
Author(s):  
Shi-Qiu Xiong ◽  
Bing-Liang Lin ◽  
Xiang Gao ◽  
Hao Tang ◽  
Chang-You Wu
2018 ◽  
Vol 69 (3) ◽  
pp. 584-593 ◽  
Author(s):  
Franziska Rinker ◽  
Christine L. Zimmer ◽  
Christoph Höner zu Siederdissen ◽  
Michael P. Manns ◽  
Anke R.M. Kraft ◽  
...  

2018 ◽  
Author(s):  
Timur O. Yarovinsky ◽  
Stephen W. Mason ◽  
Manisha Menon ◽  
Marie M. Krady ◽  
Maria Haslip ◽  
...  

ABSTRACTInfection with hepatitis B virus (HBV) can initiate chronic hepatitis and liver injury, eventually progressing to liver fibrosis or cancer and causing more than 600,000 deaths each year worldwide. Current treatments for chronic hepatitis B, relying on nucleoside antivirals and interferon, are inadequate and leave an unmet need for immunotherapeutic approaches. This report describes virus-like vesicles (VLV), a form of self-amplifying RNA replicons, which express multiple HBV antigens (polymerase, core, and middle surface) from a single vector (HBV-VLV). The HBV-VLV induces HBV-specific T cell responses to all three HBV antigens. Immunization of naive mice with the multiantigen HBV-VLV renders them resistant to acute challenge with HBV delivered by adeno-associated virus (AAV). Using a chronic model of HBV infection by AAV delivery of HBV, we demonstrate immunotherapeutic potential of the multiantigen HBV-VLV in combination with DNA booster immunization, as 40% of the HBV-VLV-treated mice showed a decline of the serum HBV surface antigen below the detection limit and marked reduction in liver HBV RNA accompanied by induction of HBsAg-specific CD8 T cells. These results warrant further evaluation of multiantigen HBV-VLV for immunotherapy of chronic hepatitis B.IMPORTANCEMore than 240 million people worldwide are chronically infected with hepatitis B virus. Current therapies are not sufficiently effective and are often beyond reach in the developing world. We describe a virus-like vesicle-based immunotherapeutic vaccine that expresses three major antigens of hepatitis B virus as a self-amplifying RNA replicon. By incorporating three HBV antigens in a single vaccine, we ensure broad T cell responses. We demonstrate that immunization with this vaccine protects mice from hepatitis B virus in a model of acute challenge. Importantly, treatment with this vaccine shows 40% efficacy in a mouse model of chronic hepatitis B. Thus, this study paves the way for evaluation of the multi-antigen virus-like vesicles as a tool for immunotherapy of chronic hepatitis B.


2008 ◽  
Vol 205 (9) ◽  
pp. 2111-2124 ◽  
Author(s):  
Abhishek Das ◽  
Matthew Hoare ◽  
Nathan Davies ◽  
A. Ross Lopes ◽  
Claire Dunn ◽  
...  

The inflamed liver in chronic hepatitis B virus (HBV) infection (CHB) is characterized by a large influx of non–virus-specific CD8 T cells. Little is known about the functional capacity of these lymphocytes, which could provide insights into mechanisms of failure of viral control and liver damage in this setting. We compared the effector function of total circulating and intrahepatic CD8 T cells in CHB patients and healthy donors. We demonstrated that CD8 T cells from CHB patients, regardless of their antigen specificity, were impaired in their ability to produce interleukin-2 and proliferate upon TCR-dependent stimulation. In contrast, these CD8 T cells had preserved production of the proinflammatory cytokines interferon-γ and tumor necrosis factor-α. This aberrant functional profile was partially attributable to down-regulation of the proximal T cell receptor signaling molecule CD3ζ, and could be corrected in vitro by transfection of CD3ζ or replenishment of the amino acid arginine required for its expression. We provide evidence for depletion of arginine in the inflamed hepatic microenvironment as a potential mechanism for these defects in global CD8 T cell signaling and function. These data imply that polarized CD8 T cells within the HBV-infected liver may impede proliferative antiviral effector function, while contributing to the proinflammatory cytokine environment.


Sign in / Sign up

Export Citation Format

Share Document