Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction

2015 ◽  
Vol 29 (1) ◽  
pp. 148-151 ◽  
Author(s):  
Olena Lykhmus ◽  
Galyna Gergalova ◽  
Marios Zouridakis ◽  
Socrates Tzartos ◽  
Sergiy Komisarenko ◽  
...  
Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 226
Author(s):  
Olena Lykhmus ◽  
Olena Kalashnyk ◽  
Kateryna Uspenska ◽  
Tetyana Horid’ko ◽  
Halyna Kosyakova ◽  
...  

Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating neuroinflammation and cognitive functions. Correspondingly, α7-/- mice demonstrate pro-inflammatory phenotype and impaired episodic memory. In addition, nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors like cytochrome c. Here we studied whether the cognitive deficiency of α7-/- mice can be cured by oral consumption of either nicotine or N-stearoylethanolamine (NSE), a lipid possessing anti-inflammatory, cannabimimetic and membrane-stabilizing activity. Mice were examined in Novel Object Recognition behavioral test, their blood, brains and brain mitochondria were tested for the levels of interleukin-6, various nAChR subtypes and cytochrome c released by ELISA. The data presented demonstrate that both substances stimulated the raise of interleukin-6 in the blood and improved episodic memory of α7-/- mice. However, NSE improved, while nicotine worsened the brain mitochondria sustainability to apoptogenic stimuli, as shown by either decreased or increased amounts of cytochrome c released. Both nicotine and NSE up-regulated α4β2 nAChRs in the brain; NSE up-regulated, while nicotine down-regulated α9-containing nAChRs in the brain mitochondria. It is concluded that the level of alternative nAChR subtypes in the brain is critically important for memory and mitochondria sustainability in the absence of α7 nAChRs.


2021 ◽  
Author(s):  
Luis M. Rivera-Perez ◽  
Julia T. Kwapiszewski ◽  
Michael T. Roberts

AbstractThe inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input from the pontomesencephalic tegmentum. Activation of nicotinic acetylcholine receptors (nAChRs) in the IC can alter acoustic processing and enhance auditory task performance. However, how nAChRs affect the excitability of specific classes of IC neurons remains unknown. Recently, we identified vasoactive intestinal peptide (VIP) neurons as a distinct class of glutamatergic principal neurons in the IC. Here, in experiments using male and female mice, we show that cholinergic terminals are routinely located adjacent to the somas and dendrites of VIP neurons. Using whole-cell electrophysiology in brain slices, we found that acetylcholine drives surprisingly strong and long-lasting excitation and inward currents in VIP neurons. This excitation was unaffected by the muscarinic receptor antagonist atropine. Application of nAChR antagonists revealed that acetylcholine excites VIP neurons mainly via activation of α3β4* nAChRs, a nAChR subtype that is rare in the brain. Furthermore, we show that cholinergic excitation is intrinsic to VIP neurons and does not require activation of presynaptic inputs. Lastly, we found that low frequency trains of acetylcholine puffs elicited temporal summation in VIP neurons, suggesting that in vivo-like patterns of cholinergic input can reshape activity for prolonged periods. These results reveal the first cellular mechanisms of nAChR regulation in the IC, identify a functional role for α3β4* nAChRs in the auditory system, and suggest that cholinergic input can potently influence auditory processing by increasing excitability in VIP neurons and their postsynaptic targets.Key points summaryThe inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input and expresses a variety of nicotinic acetylcholine receptor (nAChR) subunits.In vivo activation of nAChRs alters the input-output functions of IC neurons and influences performance in auditory tasks. However, how nAChR activation affects the excitability of specific IC neuron classes remains unknown.Here we show in mice that cholinergic terminals are located adjacent to the somas and dendrites of VIP neurons, a class of IC principal neurons.We find that acetylcholine elicits surprisingly strong, long-lasting excitation of VIP neurons and this is mediated mainly through activation of α3β4* nAChRs, a subtype that is rare in the brain.Our data identify a role for α3β4* nAChRs in the central auditory pathway and reveal a mechanism by which cholinergic input can influence auditory processing in the IC and the postsynaptic targets of VIP neurons.


Author(s):  
Roger L. Papke

Acetylcholine, exquisitely evolved as a neurotransmitter, is made and released by the neurons that take the integrated output of the central nervous system throughout the body. At both neuromuscular junctions and autonomic ganglia, acetylcholine activates synaptic ion channels that take their name from the plant alkaloid nicotine, which is a mimic of the natural neurotransmitter. This chapter begins with the scientific discoveries related to the nicotinic acetylcholine receptors (nAChR) of the neuromuscular junction and how resulting insights led to an understanding of the fundamentals of synaptic transmission. The nAChR are one member of a superfamily of ligand-gated ion channels, and although in the brain excitatory neurotransmission is mediated by another family of synaptic receptors that are gated by glutamate, nicotinic receptors are important modulators of brain function and significant targets for drug development. In the brain, nAChR are targets for cognitive disorders and, tragically, responsible for tobacco addiction.


1985 ◽  
Vol 7 (2) ◽  
pp. 389-396 ◽  
Author(s):  
Catherine Rapier ◽  
Roger Harrison ◽  
George G. Lunt ◽  
Susan Wonnacott

Sign in / Sign up

Export Citation Format

Share Document