Hardness and tractability of the γ-Complete Subgraph problem

2021 ◽  
Vol 169 ◽  
pp. 106105
Author(s):  
Ambroise Baril ◽  
Riccardo Dondi ◽  
Mohammad Mehdi Hosseinzadeh
Keyword(s):  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Akram Khodadadi ◽  
Shahram Saeidi

AbstractThe k-clique problem is identifying the largest complete subgraph of size k on a network, and it has many applications in Social Network Analysis (SNA), coding theory, geometry, etc. Due to the NP-Complete nature of the problem, the meta-heuristic approaches have raised the interest of the researchers and some algorithms are developed. In this paper, a new algorithm based on the Bat optimization approach is developed for finding the maximum k-clique on a social network to increase the convergence speed and evaluation criteria such as Precision, Recall, and F1-score. The proposed algorithm is simulated in Matlab® software over Dolphin social network and DIMACS dataset for k = 3, 4, 5. The computational results show that the convergence speed on the former dataset is increased in comparison with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) approaches. Besides, the evaluation criteria are also modified on the latter dataset and the F1-score is obtained as 100% for k = 5.


2013 ◽  
Vol 23 (1) ◽  
pp. 102-115 ◽  
Author(s):  
TEERADEJ KITTIPASSORN ◽  
BHARGAV P. NARAYANAN

Given an edge colouring of a graph with a set of m colours, we say that the graph is exactly m-coloured if each of the colours is used. We consider edge colourings of the complete graph on $\mathbb{N}$ with infinitely many colours and show that either one can find an exactly m-coloured complete subgraph for every natural number m or there exists an infinite subset X ⊂ $\mathbb{N}$ coloured in one of two canonical ways: either the colouring is injective on X or there exists a distinguished vertex v in X such that X\{v} is 1-coloured and each edge between v and X\{v} has a distinct colour (all different to the colour used on X\{v}). This answers a question posed by Stacey and Weidl in 1999. The techniques that we develop also enable us to resolve some further questions about finding exactly m-coloured complete subgraphs in colourings with finitely many colours.


Author(s):  
G. R. Grimmett ◽  
C. J. H. McDiarmid

AbstractLet ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,


2019 ◽  
Vol 20 (S25) ◽  
Author(s):  
Jie Zhao ◽  
Xiujuan Lei

Abstract Background Protein complexes are the cornerstones of many biological processes and gather them to form various types of molecular machinery that perform a vast array of biological functions. In fact, a protein may belong to multiple protein complexes. Most existing protein complex detection algorithms cannot reflect overlapping protein complexes. To solve this problem, a novel overlapping protein complexes identification algorithm is proposed. Results In this paper, a new clustering algorithm based on overlay network chain in quotient space, marked as ONCQS, was proposed to detect overlapping protein complexes in weighted PPI networks. In the quotient space, a multilevel overlay network is constructed by using the maximal complete subgraph to mine overlapping protein complexes. The GO annotation data is used to weight the PPI network. According to the compatibility relation, the overlay network chain in quotient space was calculated. The protein complexes are contained in the last level of the overlay network. The experiments were carried out on four PPI databases, and compared ONCQS with five other state-of-the-art methods in the identification of protein complexes. Conclusions We have applied ONCQS to four PPI databases DIP, Gavin, Krogan and MIPS, the results show that it is superior to other five existing algorithms MCODE, MCL, CORE, ClusterONE and COACH in detecting overlapping protein complexes.


Author(s):  
R. C. Mullin ◽  
B. K. Roy ◽  
P. J. Schellenberg

AbstractGiven a finite graph H and G, a subgraph of it, we define σ (G, H) to be the largest integer such that every pair of subgraphs of H, both isomorphic to G, has at least σ(G, H) edges in common; furthermore, R(G, H) is defined to be the maximum number of subgraphs of H, all isomorphic to G, such that any two of them have σ(G, H) edges common between them. We are interested in the values of σ(G, H) and R(G, H) for general H and G. A number of combinatorial problems can be considered as special cases of this question; for example, the classical set-packing problem is equivalent to evaluating R (G, H) where G is a complete subgraph of the complete graph H and σ(G, H) = 0, and the decomposition of H into subgraphs isomorphic to G is equivalent to showing that σ(G, H) = 0 and R(G, H) = ε(H)/ε(G) where ε(H), ε(G) are the number of edges in H, G respectively.A result of S. M. Johnson (1962) gives an upper bound for R(G, H) in terms of σ(G, H). As a corollary of Johnson's result, we obtain the upper bound of McCarthy and van Rees (1977) for the Cordes problem. The remainder of the paper is a study of σ (G, H) and R(G, H) for special classes of graphs; in particular, H is a complete graph and G is, in most instances, a union of disjoint complete subgraphs.


2009 ◽  
Vol 08 (02) ◽  
pp. 243-257 ◽  
Author(s):  
A. ABDOLLAHI ◽  
A. MOHAMMADI HASSANABADI

We associate a graph [Formula: see text] to a non locally cyclic group G (called the non-cyclic graph of G) as follows: take G\ Cyc (G) as vertex set, where Cyc (G) = {x ∈ G | 〈x,y〉 is cyclic for all y ∈ G} is called the cyclicizer of G, and join two vertices if they do not generate a cyclic subgroup. For a simple graph Γ, w(Γ) denotes the clique number of Γ, which is the maximum size (if it exists) of a complete subgraph of Γ. In this paper we characterize groups whose non-cyclic graphs have clique numbers at most 4. We prove that a non-cyclic group G is solvable whenever [Formula: see text] and the equality for a non-solvable group G holds if and only if G/ Cyc (G) ≅ A5 or S5.


10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.


1969 ◽  
Vol 21 ◽  
pp. 317-334 ◽  
Author(s):  
E. C. Milner

Capital letters denote sets and the cardinal of A is |A|. Greek letters always denote ordinal numbers and, unless stated otherwise, small latin letters denote non-negative integers. The symbol [A]r is used to denote the set {X: X ⊂ A; |X| = r} of all subsets of A with relements. If A is a simply ordered set with the order relation <, then the order type of A with this ordering is written as tp <A or simply as tp A when there is no ambiguity about the intended order relation. A graph G = (A, E) is an ordered pair with A as the set of vertices and E ⊂ [A]2 as the set of edges. In particular, if A is simply ordered, we call G a graph of type tp A. A complete subgraph of G = (A, E)is a set B ⊂ A such that [B]2 ⊂ E; a set C⊂ A is independent if [C]2 ∩ E = ∅.


Sign in / Sign up

Export Citation Format

Share Document