Parameters Analysis of Sample Entropy, Permutation Entropy and Permutation Ratio Entropy for RR Interval Time Series

2020 ◽  
Vol 57 (5) ◽  
pp. 102283
Author(s):  
Jian Yin ◽  
PengXiang Xiao ◽  
Junyan Li ◽  
Yungang Liu ◽  
Chenggang Yan ◽  
...  
Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 411 ◽  
Author(s):  
Lina Zhao ◽  
Jianqing Li ◽  
Jinle Xiong ◽  
Xueyu Liang ◽  
Chengyu Liu

Sample entropy (SampEn) is widely used for electrocardiogram (ECG) signal analysis to quantify the inherent complexity or regularity of RR interval time series (i.e., heart rate variability (HRV)), with the hypothesis that RR interval time series in pathological conditions output lower SampEn values. However, ectopic beats can significantly influence the entropy values, resulting in difficulty in distinguishing the pathological situation from normal situations. Although a theoretical operation is to exclude the ectopic intervals during HRV analysis, it is not easy to identify all of them in practice, especially for the dynamic ECG signal. Thus, it is important to suppress the influence of ectopic beats on entropy results, i.e., to improve the robustness and stability of entropy measurement for ectopic beats-inserted RR interval time series. In this study, we introduced a physical threshold-based SampEn method, and tested its ability to suppress the influence of ectopic beats for HRV analysis. An experiment on the PhysioNet/MIT RR Interval Databases showed that the SampEn use physical meaning threshold has better performance not only for different data types (normal sinus rhythm (NSR) or congestive heart failure (CHF) recordings), but also for different types of ectopic beat (atrial beats, ventricular beats or both), indicating that using a physical meaning threshold makes SampEn become more consistent and stable.


Author(s):  
M. McCullough ◽  
M. Small ◽  
H. H. C. Iu ◽  
T. Stemler

In this study, we propose a new information theoretic measure to quantify the complexity of biological systems based on time-series data. We demonstrate the potential of our method using two distinct applications to human cardiac dynamics. Firstly, we show that the method clearly discriminates between segments of electrocardiogram records characterized by normal sinus rhythm, ventricular tachycardia and ventricular fibrillation. Secondly, we investigate the multiscale complexity of cardiac dynamics with respect to age in healthy individuals using interbeat interval time series and compare our findings with a previous study which established a link between age and fractal-like long-range correlations. The method we use is an extension of the symbolic mapping procedure originally proposed for permutation entropy. We build a Markov chain of the dynamics based on order patterns in the time series which we call an ordinal network, and from this model compute an intuitive entropic measure of transitional complexity. A discussion of the model parameter space in terms of traditional time delay embedding provides a theoretical basis for our multiscale approach. As an ancillary discussion, we address the practical issue of node aliasing and how this effects ordinal network models of continuous systems from discrete time sampled data, such as interbeat interval time series. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’.


Sign in / Sign up

Export Citation Format

Share Document