Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system

2016 ◽  
Vol 65 ◽  
pp. 72-80 ◽  
Author(s):  
Bin Wang ◽  
Jianyi Xue ◽  
Fengjiao Wu ◽  
Delan Zhu
2016 ◽  
Vol 24 (5) ◽  
pp. 1001-1010 ◽  
Author(s):  
Bin Wang ◽  
Jianyi Xue ◽  
Fengjiao Wu ◽  
Delan Zhu

In this study, a robust finite time Takagi-Sugeno fuzzy control method for hydro-turbine governing system (HTGS) is investigated. Firstly, the mathematical model of HTGS is introduced, and on the basis of Takagi-Sugeno (T-S) fuzzy rules, the T-S fuzzy model of HTGS is presented. Secondly, based on finite time stability theory, a novel finite time Takagi-Sugeno fuzzy control method is designed for the stability control of HTGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed finite time T-S fuzzy control scheme works well compared with the conventional method. The approach proposed in this paper is easy to implement and also provides reference for relevant hydropower systems.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2019 ◽  
Vol 139 ◽  
pp. 447-458 ◽  
Author(s):  
Sunhua Huang ◽  
Bin Zhou ◽  
Siqi Bu ◽  
Canbing Li ◽  
Cong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document