A Quantitative Intelligent Diagnosis Method for Early Weak Faults of Aviation High-speed Bearings

2019 ◽  
Vol 93 ◽  
pp. 370-383 ◽  
Author(s):  
Baojian Wang ◽  
Xiaoli Zhang ◽  
Chuang Sun ◽  
Xuefeng Chen
Author(s):  
Honghui Dong ◽  
Fuzhao Chen ◽  
zhipeng wang ◽  
Limin Jia ◽  
Yong Qin ◽  
...  

2012 ◽  
Vol 262 ◽  
pp. 361-366
Author(s):  
Zhuo Fei Xu ◽  
Hai Yan Zhang ◽  
Ling Hui Ren

Roller-mark is a common problem in offset printing and its solution method is important for printing. A new detecting method of texture analysis was given in this paper. In this study, printing image was acquired with high-speed CCD. Compared the difference between printing image and standard image, a defective image was obtained. Then the reason of roller-marks was given by the texture recognition of defect image. Finally, experiments were taken to prove the feasibility and effectiveness of this new method for the roller-marks diagnosis in the offset printing machine.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 38168-38178 ◽  
Author(s):  
Chao Cheng ◽  
Xinyu Qiao ◽  
Hao Luo ◽  
Wanxiu Teng ◽  
Mingliang Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document