A new hybrid force/position control approach for time-varying constrained reconfigurable manipulators

Author(s):  
Naveen Kumar ◽  
Manju Rani
Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


Author(s):  
Vincent Aloi ◽  
Caroline Black ◽  
Caleb Rucker

Parallel continuum robots can provide compact, compliant manipulation of tools in robotic surgery and larger-scale human robot interaction. In this paper we address stiffness control of parallel continuum robots using a general nonlinear kinetostatic modeling framework based on Cosserat rods. We use a model formulation that estimates the applied end-effector force and pose using actuator force measurements. An integral control approach then modifies the commanded target position based on the desired stiffness behavior and the estimated force and position. We then use low-level position control of the actuators to achieve the modified target position. Experimental results show that after calibration of a single model parameter, the proposed approach achieves accurate stiffness control in various directions and poses.


Actuators ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Johannes T. Stoll ◽  
Kevin Schanz ◽  
Andreas Pott

Robots that enable safe human-robot collaboration can be realized by using compliant drive units. In previous works, different mechanical designs of compliant pneumatic rotary drive units with similar characteristics have been presented. In this paper, we present the overall control approach that we use to operate one of these compliant pneumatic rotary drive units. We explain the mechanical design and derive the differential equation that describes the dynamics of the system. In order to successfully operate a pneumatic drive unit with three or more working chambers, the torque specified by the controller has to be split up onto the working chambers. We transfer the well-known field-oriented control approach from electric motors to the investigated pneumatic drive unit to create such a torque mapping. Moreover, we develop optimized torque mappings that are tailored to work with this type of drive unit. Furthermore, we introduce and compare two control algorithms based on different implementations of state feedback to realize position control. Finally, we present the step responses that we achieve when we implement either one of the control algorithms in combination with the different torque mappings.


Automatica ◽  
2015 ◽  
Vol 51 ◽  
pp. 356-363 ◽  
Author(s):  
Martin Guay ◽  
Denis Dochain

Sign in / Sign up

Export Citation Format

Share Document