dynamic emulation
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 44
Author(s):  
Leiting Tao ◽  
Xiaofeng Wang ◽  
Yuan Liu ◽  
Jie Wu

Cyber-physical systems (CPSs) based on space-ground integrated networks (SGINs) enable CPSs to break through geographical restrictions in space. Therefore, providing a test platform is necessary for new technical verification and network security strategy evaluations of SGINs. User behavior emulation technology can effectively support the construction of a test platform. Given the inherent dynamic changes, diverse behaviors, and large-scale characteristics of SGIN users, we propose user behavior emulation technology based on a cloud platform. First, the dynamic emulation architecture for user behavior for SGINs is designed. Then, normal user behavior emulation strategy driven by the group user behavior model in real time is proposed, which can improve the fidelity of emulation. Moreover, rogue user behavior emulation technology is adopted, based on traffic replay, to perform the security evaluation. Specifically, virtual Internet Protocol (IP) technology and the epoll model are effectively integrated in this investigation to resolve the contradiction between large-scale emulation and computational overhead. The experimental results demonstrate that the strategy meets the requirement of a diverse and high-fidelity dynamic user behavior emulation and reaches the emulation scale of 100,000-level concurrent communication for normal users and 100,000-level concurrent attacks for rogue users.


Author(s):  
Jacob Tracy ◽  
Won Chang ◽  
Sarah St. George Freeman ◽  
Casey Brown ◽  
Adriana Palma ◽  
...  

Author(s):  
Alberto Broatch ◽  
Vicente Bermúdez ◽  
José Ramón Serrano ◽  
Roberto Tabet ◽  
Javier Gómez ◽  
...  

According to current worldwide trends for homologation vehicles in real driving conditions is forced to test the engines in altitude and in highly dynamic driving cycles in order to approach nowadays and next future emissions standard. Up to now, there were two main options to perform this type of tests: round-robin tests of the whole vehicle or hypobaric chambers, both with high costs and low repeatability. In this paper a new device is described, which can emulate ambient conditions at whatever altitude between sea level and 5000 m high. Even it can be used to emulate ambient conditions at sea level when test bench is placed up to 2000 m high. The main advantages of the altitude simulation equipment are as follows: dynamic emulation of all the psychrometric variables affecting the vehicles during round-robin tests; lower space usage and low-energy consumption. The altitude simulator (AS) has been validated comparing with results from a hypobaric chamber at different altitudes. Previously a research about the dispersion in the measurements of both testing devices has been done for assessing the results of the comparison experiment. Final conclusion resulted in the same operating performance and emissions of the studied engine with both types of testing equipment for altitude simulation.


Author(s):  
Alberto Broatch ◽  
Vicente Bermúdez ◽  
Jose Ramón Serrano ◽  
Roberto Tabet-Aleixandre ◽  
Javier Gómez ◽  
...  

According to current worldwide trends for homologation vehicles in real driving conditions, is forced to test the engines in altitude and in highly dynamic driving cycles in order to approach nowadays and next future emissions standard. Up to now, there were two main options to perform this type of tests: round-robin tests of the whole vehicle or hypobaric chambers, both with high costs and low repeatability. In this paper a new device is described, which can emulate ambient conditions at whatever altitude between sea level and 5000m high. Even it can be used to emulate ambient conditions at sea level when test bench is placed up to 2000 m high. The main advantages of the altitude simulation equipment are: dynamic emulation of all the psychrometric variables affecting the vehicles during round-robin tests; lower space usage and low energy consumption. The altitude simulator has been validated comparing with results from a hypobaric chamber at different altitudes. Previously a research about the dispersion in the measurements of both testing devices has been done for assessing the results of the comparison experiment. Final conclusion resulted in the same operating performance and emissions of the studied engine with both types of testing equipments for altitude simulation.


Sign in / Sign up

Export Citation Format

Share Document