An explicit robust stability condition for uncertain time-varying first-order plus dead-time systems

Author(s):  
Saeed Salavati ◽  
Karolos Grigoriadis ◽  
Matthew Franchek
10.5772/19258 ◽  
2011 ◽  
Author(s):  
Dennis Brandao ◽  
Nunzio Torrisi ◽  
Renato F. Fernandes Jr

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Narongsak Yotha ◽  
Kanit Mukdasai

This paper investigates the problem of robust stability for linear parameter-dependent (LPD) discrete-time systems with interval time-varying delays. Based on the combination of model transformation, utilization of zero equation, and parameter-dependent Lyapunov-Krasovskii functional, new delay-dependent robust stability conditions are obtained and formulated in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 212
Author(s):  
Ning He ◽  
Yichun Jiang ◽  
Lile He

An analytical model predictive control (MPC) tuning method for multivariable first-order plus fractional dead time systems is presented in this paper. First, the decoupling condition of the closed-loop system is derived, based on which the considered multivariable MPC tuning problem is simplified to a pole placement problem. Given such a simplification, an analytical tuning method guaranteeing the closed-loop stability as well as pre-specified time-domain performance is developed. Finally, simulation examples are provided to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document